
autopush Documentation
Release 1.58.4

Mozilla

Jul 13, 2023

Contents

1 Autopush APIs 3
1.1 HTTP Endpoints for Notifications . 3
1.2 Push Service HTTP API . 3
1.3 Push Service Bridge HTTP Interface . 7

2 Running Autopush 13
2.1 Architecture . 13
2.2 Running Autopush . 17

3 Developing Autopush 21
3.1 Installing . 21
3.2 Testing . 26
3.3 Release Process . 27
3.4 Coding Style Guide . 29

4 Source Code 31
4.1 Code Documentation . 31

5 Changelog 53

6 Bugs/Support 55

7 autopush Endpoints 57
7.1 dev . 57
7.2 stage . 57
7.3 production . 57

8 Reference 59
8.1 Glossary . 59
8.2 Migrating to Rust . 60

9 License 61

HTTP Routing Table 63

Python Module Index 65

Index 67

i

ii

autopush Documentation, Release 1.58.4

Mozilla Push server and Push Endpoint utilizing PyPy, twisted, and DynamoDB.

Please note: The python components of this server are being deprecated in favor of a pure rust implementation. We
are planning on moving the websocket handler first, followed by the endpoint handlers. See Migrating to Rust for
details.

This is the third generation of Push server built in Mozilla Services, first to handle Push for FirefoxOS clients, then
extended for push notifications for Firefox (via the W3C Push spec.)

For how to read and respond to autopush error codes, see Errors.

For an overview of the Mozilla Push Service and where autopush fits in, see the Mozilla Push Service architecture
diagram. This push service uses websockets to talk to Firefox, with a Push endpoint that implements the WebPush
standard for its HTTP Endpoints for Notifications API.

Contents 1

https://travis-ci.org/mozilla-services/autopush
https://codecov.io/github/mozilla-services/autopush
https://github.com/mozilla-services/autopush-rs
http://w3c.github.io/push-api/index.html
http://mozilla-push-service.readthedocs.io/en/latest/#architecture
http://mozilla-push-service.readthedocs.io/en/latest/#architecture

autopush Documentation, Release 1.58.4

2 Contents

CHAPTER 1

Autopush APIs

For developers writing mobile applications in Mozilla, or web developers using Push on the web with Firefox.

1.1 HTTP Endpoints for Notifications

Autopush exposes three HTTP endpoints:

/wpush/. . .

This is tied to the Endpoint Handler WebPushHandler This endpoint is returned by the Push registration process
and is used by the AppServer to send Push alerts to the Application. See Send Notification.

/m/. . .

This is tied to MessageHandler. This endpoint allows a message that has not yet been delivered to be deleted. See
Cancel Notification.

/v1/. . . /. . . /registration/. . .

This is tied to the Registration Handlers. This endpoint is used by devices that wish to use bridging protocols to
register new channels.

NOTE: This is not intended to be used by app developers. Please see the Web Push API on MDN for how to use
WebPush. See Push Service Bridge HTTP Interface.

—

1.2 Push Service HTTP API

The following section describes how remote servers can send Push Notifications to apps running on remote User
Agents.

3

https://developer.mozilla.org/en-US/docs/Web/API/Push_API

autopush Documentation, Release 1.58.4

1.2.1 Lexicon

{UAID} The Push User Agent Registration ID

Push assigns each remote recipient a unique identifier. {UAID}s are UUIDs in lower case, undashed format. (e.g.
‘01234567abcdabcdabcd01234567abcd’) This value is assigned during Registration

{CHID} The Channel Subscription ID

Push assigns a unique identifier for each subscription for a given {UAID}. Like {UAID}s, {CHID}s are UUIDs, but
in lower case, dashed format(e.g. ‘01234567-abcd-abcd-abcd-0123456789ab’). The User Agent usually creates this
value and passes it as part of the Channel Subscription. If no value is supplied, the server will create and return one.

{message-id} The unique Message ID

Push assigns each message for a given Channel Subscription a unique identifier. This value is assigned during Send
Notification.

1.2.2 Response

The responses will be JSON formatted objects. In addition, API calls will return valid HTTP error codes (see Error
Codes sub-section for descriptions of specific errors).

For non-success responses, an extended error code object will be returned with the following format:

{
"code": 404, // matches the HTTP status code
"errno": 103, // stable application-level error number
"error": "Not Found", // string representation of the status
"message": "No message found" // optional additional error information

}

1.2.3 Error Codes

Autopush uses error codes based on HTTP response codes. An error response will contain a JSON body including an
additional error information (see Response).

Unless otherwise specified, all calls return one the following error statuses:

• 20x - Success - The message was accepted for transmission to the client. Please note that the message may still
be rejected by the User Agent if there is an error with the message’s encryption.

• 301 - Moved + ‘Location:‘ if {client_token} is invalid (Bridge API Only) - Bridged services (ones that run over
third party services like GCM and APNS), may require a new URL be used. Please stop using the old URL
immediately and instead use the new URL provided.

• 400 - Bad Parameters – One or more of the parameters specified is invalid. See the following sub-errors
indicated by errno

– errno 101 - Missing necessary crypto keys - One or more required crypto key elements are missing from
this transaction. Refer to the appropriate specification for the requested content-type.

– errno 108 - Router type is invalid - The URL contains an invalid router type, which may be from URL
corruption or an unsupported bridge. Refer to Push Service Bridge HTTP Interface.

– errno 110 - Invalid crypto keys specified - One or more of the crytpo key elements are invalid. Refer to the
appropriate specification for the requested content-type.

4 Chapter 1. Autopush APIs

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/

autopush Documentation, Release 1.58.4

– errno 111 - Missing Required Header - A required crypto element header is missing. Refer to the appro-
priate specification for the requested content-type.

* Missing TTL Header - Include the Time To Live header (IETF WebPush protocol §6.2)

* Missing Crypto Headers - Include the appropriate encryption headers (WebPush Encryption §3.2 and
WebPush VAPID §4)

– errno 112 - Invalid TTL header value - The Time To Live “TTL” header contains an invalid or unreadable
value. Please change to a number of seconds that this message should live, between 0 (message should be
dropped immediately if user is unavailable) and 2592000 (hold for delivery within the next approximately
30 days).

– errno 113 - Invalid Topic header value - The Topic header contains an invalid or unreadable value. Please
use only ASCII alphanumeric values [A-Za-z0-9] and a maximum length of 32 bytes..

• 401 - Bad Authorization - Authorization header is invalid or missing. See the VAPID specification.

– errno 109 - Invalid authentication

• 404 - Endpoint Not Found - The URL specified is invalid and should not be used again.

– errno 102 - Invalid URL endpoint

• 410 - Endpoint Not Valid - The URL specified is no longer valid and should no longer be used. A User has
become permanently unavailable at this URL.

– errno 103 - Expired URL endpoint

– errno 105 - Endpoint became unavailable during request

– errno 106 - Invalid subscription

• 413 - Payload too large - The body of the message to send is too large. The max data that can be sent is 4028
characters. Please reduce the size of the message.

– errno 104 - Data payload too large

• 500 - Unknown server error - An internal error occurred within the Push Server.

– errno 999 - Unknown error

• 502 - Bad Gateway - The Push Service received an invalid response from an upstream Bridge service.

– errno 900 - Internal Bridge misconfiguration

– errno 901 - Invalid authentication

– errno 902 - An error occurred while establishing a connection

– errno 903 - The request timed out

• 503 - Server temporarily unavaliable. - The Push Service is currently unavailable. See the error number
“errno” value to see if retries are available.

– errno 201 - Use exponential back-off for retries

– errno 202 - Immediate retry ok

1.2.4 Calls

1.2. Push Service HTTP API 5

https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/
https://tools.ietf.org/html/draft-ietf-webpush-protocol#section-6.2
https://webpush-wg.github.io/webpush-encryption/#rfc.section.3.2
https://tools.ietf.org/html/draft-ietf-webpush-vapid-02#section-4
https://datatracker.ietf.org/doc/draft-ietf-webpush-vapid/

autopush Documentation, Release 1.58.4

Send Notification

Send a notification to the given endpoint identified by its push_endpoint. Please note, the Push endpoint URL (which
is what is used to send notifications) should be considered “opaque”. We reserve the right to change any portion of the
Push URL in future provisioned URLs.

The Topic HTTP header allows new messages to replace previously sent, unreceived subscription updates. See Mes-
sage Topics.

Call:

POST {push_endpoint}
If the client is using webpush style data delivery, then the body in its entirety will be regarded as the data payload
for the message per the WebPush spec.

Note: Some bridged connections require data transcription and may limit the length of data that can be sent.
For instance, using a GCM/FCM bridge will require that the data be converted to base64. This means that data
may be limited to only 2744 bytes instead of the normal 4096 bytes.

Reply:

{"message-id": {message-id}}

Return Codes:

statuscode 404 Push subscription is invalid.

statuscode 202 Message stored for delivery to client at a later time.

statuscode 200 Message delivered to node client is connected to.

Message Topics

Message topics allow newer message content to replace previously sent, unread messages. This prevents the UA from
displaying multiple messages upon reconnect. A blog post provides an example of how to use Topics, but a summary
is provided here.

To specify a Topic, include a Topic HTTP header along with your Send Notification. The topic can be any 32 byte
alpha-numeric string (including “_” and “-“).

Example topics might be MailMessages, Current_Score, or 20170814-1400_Meeting_Reminder

For example:

curl -X POST \
https://push.services.mozilla.com/wpush/abc123... \
-H "TTL: 86400" \
-H "Topic: new_mail" \
-H "Authorization: Vapid AbCd..." \
...

Would create or replace a message that is valid for the next 24 hours that has the topic of new_mail. The body of this
might contain the number of unread messages. If a new message arrives, the Application Server could send a second
message with a body containing a revised message count.

Later, when the User reconnects, she will only see a single notification containing the latest notification, with the most
recent new mail message count.

6 Chapter 1. Autopush APIs

https://tools.ietf.org/html/draft-thomson-webpush-http2-02#section-5
https://hacks.mozilla.org/2016/11/mozilla-push-server-now-supports-topics/

autopush Documentation, Release 1.58.4

Cancel Notification

Delete the message given the message_id.

Call:

DELETE /m/{message_id}

Parameters:

None

Reply:

{}

Return Codes:

See Error Codes.

—

1.3 Push Service Bridge HTTP Interface

Push allows for remote devices to perform some functions using an HTTP interface. This is mostly used by devices
that are bridging via an external protocol like GCM/FCM or APNs. All message bodies must be UTF-8 encoded.

API methods requiring Authorization must provide the Authorization header containing the registration secret. The
registration secret is returned as “secret” in the registration response.

1.3.1 Lexicon

For the following call definitions:

{type} The bridge type.

Allowed bridges are gcm (Google Cloud Messaging), fcm (Firebase Cloud Messaging), and apns (Apple Push Notifi-
cation system)

{app_id} The bridge specific application identifier

Each bridge may require a unique token that addresses the remote application For GCM/FCM, this is the SenderID
(or ‘project number’) and is pre-negotiated outside of the push service. You can find this number using the Google
developer console. For APNS, this value is the “platform” or “channel” of development (e.g. “firefox”, “beta”,
“gecko”, etc.) For our examples, we will use a client token of “33clienttoken33”.

{instance_id} The bridge specific private identifier token

Each bridge requires a unique token that addresses the application on a given user’s device. This is the “Registration
Token” for GCM/FCM or “Device Token” for APNS. This is usually the product of the application registering the
{instance_id} with the native bridge via the user agent. For our examples, we will use an instance ID of “11-instance-
id-11”.

{secret} The registration secret from the Registration call.

Most calls to the HTTP interface require a Authorization header. The Authorization header is a simple bearer token,
which has been provided by the Registration call and is preceded by the scheme name “Bearer”. For our examples,
we will use a registration secret of “00secret00”.

An example of the Authorization header would be:

1.3. Push Service Bridge HTTP Interface 7

https://developers.google.com/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html#//apple_ref/doc/uid/TP40008196-CH1-SW1
https://console.developers.google.com/iam-admin/settings/project
https://console.developers.google.com/iam-admin/settings/project
https://firebase.google.com/docs/cloud-messaging/android/client#sample-register
https://firebase.google.com/docs/cloud-messaging/android/client#sample-register
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html#//apple_ref/doc/uid/TP40008194-CH103-SW2

autopush Documentation, Release 1.58.4

Authorization: Bearer 00secret00

1.3.2 Calls

Registration

Request a new UAID registration, Channel ID, and set a bridge type and 3rd party bridge instance ID token for this
connection. (See NewRegistrationHandler)

NOTE: This call is designed for devices to register endpoints to be used by bridge protocols. Please see Web Push API
for how to use Web Push in your application.

Call:

POST /v1/{type}/{app_id}/registration

This call requires no Authorization header.

Parameters:

{“token”:{instance_id}}

Note: If additional information is required for the bridge, it may be included in the parameters as JSON
elements. Currently, no additional information is required.

Reply:

`{"uaid": {UAID}, "secret": {secret},
"endpoint": "https://updates-push...", "channelID": {CHID}}`

example:

> POST /v1/fcm/33clienttoken33/registration
>
> {"token": "11-instance-id-11"}

< {"uaid": "01234567-0000-1111-2222-0123456789ab",
< "secret": "00secret00",
< "endpoint": "https://updates-push.services.mozaws.net/push/...",
< "channelID": "00000000-0000-1111-2222-0123456789ab"}

Return Codes:

See Error Codes.

Token updates

Update the current bridge token value. Note, this is a *PUT* call, since we are updating existing information. (See
UaidRegistrationHandler)

Call:

PUT /v1/{type}/{app_id}/registration/{uaid}

Authorization: Bearer {secret}

8 Chapter 1. Autopush APIs

https://developer.mozilla.org/en-US/docs/Web/API/Push_API

autopush Documentation, Release 1.58.4

Parameters:

{“token”: {instance_id}}

Note: If additional information is required for the bridge, it may be included in the parameters as JSON
elements. Currently, no additional information is required.

Reply:

{}

example:

> PUT /v1/fcm/33clienttoken33/registration/abcdef012345
> Authorization: Bearer 00secret00
>
> {"token": "22-instance-id-22"}

< {}

Return Codes:

See Error Codes.

Channel Subscription

Acquire a new ChannelID for a given UAID. (See SubRegistrationHandler)

Call:

POST /v1/{type}/{app_id}/registration/{uaid}/subscription

Authorization: Bearer {secret}

Parameters:

{}

Reply:

{"channelID": {CHID}, "endpoint": "https://updates-push..."}

example:

> POST /v1/fcm/33clienttoken33/registration/abcdef012345/subscription
> Authorization: Bearer 00secret00
>
> {}

< {"channelID": "01234567-0000-1111-2222-0123456789ab",
< "endpoint": "https://updates-push.services.mozaws.net/push/..."}

Return Codes:

See Error Codes.

1.3. Push Service Bridge HTTP Interface 9

autopush Documentation, Release 1.58.4

Unregister UAID (and all associated ChannelID subscriptions)

Indicate that the UAID, and by extension all associated subscriptions, is no longer valid. (See
UaidRegistrationHandler)

Call:

DELETE /v1/{type}/{app_id}/registration/{uaid}

Authorization: Bearer {secret}

Parameters:

{}

Reply:

{}

Return Codes:

See Error Codes.

Unsubscribe Channel

Remove a given ChannelID subscription from a UAID. (See: ChannelRegistrationHandler)

Call:

DELETE /v1/{type}/{app_id}/registration/{UAID}/subscription/{CHID}

Authorization: Bearer {secret}

Parameters:

{}

Reply:

{}

Return Codes:

See Error Codes.

Get Known Channels for a UAID

Fetch the known ChannelIDs for a given bridged endpoint. This is useful to check link status. If no channelIDs are
present for a given UAID, an empty set of channelIDs will be returned. (See: UaidRegistrationHandler)

Call:

GET /v1/{type}/{app_id}/registration/{UAID}/
Authorization: Bearer {secret}

Parameters:

{}

Reply:

10 Chapter 1. Autopush APIs

autopush Documentation, Release 1.58.4

{"uaid": {UAID}, "channelIDs": [{ChannelID}, ...]}

example:

> GET /v1/gcm/33clienttoken33/registration/abcdef012345/
> Authorization: Bearer 00secret00
>
> {}

< {"uaid": "abcdef012345",
< "channelIDS": ["01234567-0000-1111-2222-0123456789ab", "76543210-0000-1111-2222-
→˓0123456789ab"]}

Return Codes:

See Error Codes.

1.3. Push Service Bridge HTTP Interface 11

autopush Documentation, Release 1.58.4

12 Chapter 1. Autopush APIs

CHAPTER 2

Running Autopush

If you just want to run autopush, for testing Push locally with Firefox, or to deploy autopush to a production environ-
ment for Firefox.

2.1 Architecture

2.1.1 Overview

For Autopush, we will focus on the section in the above diagram in the Autopush square.

Autopush consists of two types of server daemons:

autopush (connection node)

Run a connection node. These handle large amounts of user agents (Firefox) using the Websocket proto-
col.

autoendpoint (endpoint node)

Run an endpoint node. These provide a WebPush HTTP API for Application Servers to HTTP POST
messages to endpoints.

To have a running Push Service for Firefox, both of these server daemons must be running and communicating with
the same DynamoDB tables. A local DynamoDB can be run or AWS DynamoDB.

Endpoint nodes handle all Notification POST requests, looking up in DynamoDB to see what Push server the UAID is
connected to. The Endpoint nodes then attempt delivery to the appropriate connection node. If the UAID is not online,
the message may be stored in DynamoDB in the appropriate message table.

Push connection nodes accept websocket connections (this can easily be HTTP/2 for WebPush), and deliver notifica-
tions to connected clients. They check DynamoDB for missed notifications as necessary.

13

autopush Documentation, Release 1.58.4

There will be many more Push servers to handle the connection node, while more Endpoint nodes can be handled as
needed for notification throughput.

2.1.2 Cryptography

The HTTP endpoint URL’s generated by the connection nodes contain encrypted information, the UAID and Subscrip-
tion to send the message to. This means that they both must have the same CRYPTO_KEY supplied to each.

See make_endpoint() for the endpoint URL generator.

If you are only running Autopush locally, you can skip to Running Autopush as later topics in this document apply
only to developing or production scale deployments of Autopush.

2.1.3 DynamoDB Tables

Autopush uses a single router table and multiple messages tables, one for each month of the year. On startup, Autopush
will create the router table and a message table for the prior month and the current month of the year.

For more information on DynamoDB tables, see http://docs.aws.amazon.com/amazondynamodb/latest/
gettingstartedguide/Welcome.html

Router Table Schema

The router table stores metadata for a given UAID as well as which month table should be used for clients with a
router_type of webpush.

For Bridging, additional bridge-specific data may be stored in the router record for a UAID.

uaid partition key - UAID
router_type Router Type
node_id Hostname of the connection node the client is connected to.
connected_at Precise time (in milliseconds) the client connected to the node.
last_connect global secondary index - year-month-hour that the client has last connected.
curmonth Message table name to use for storing WebPush messages.

Autopush uses an optimistic deletion policy for node_id to avoid delete calls when not needed. During a delivery
attempt, the endpoint will check the node_id for the corresponding UAID. If the client is not connected, it will clear
the node_id record for that UAID in the router table.

If an endpoint node discovers during a delivery attempt that the node_id on record does not have the client connected,
it will clear the node_id record for that UAID in the router table.

The last_connect has a secondary global index on it to allow for maintenance scripts to locate and purge stale
client records and messages.

Clients with a router_type of webpush drain stored messages from the message table named curmonth after
completing their initial handshake. If the curmonth entry is not the current month then it updates it to store new
messages in the latest message table after stored message retrieval.

Message Table Schema

The message table stores messages for users while they’re offline or unable to get immediate message delivery.

14 Chapter 2. Running Autopush

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/Welcome.html

autopush Documentation, Release 1.58.4

uaid partition key - UAID
chidmes-
sageid

sort key - CHID + Message-ID.

chids Set of CHID that are valid for a given user. This entry is only present in the item when
chidmessageid is a space.

data Payload of the message, provided in the Notification body.
headers HTTP headers for the Notification.
ttl Time-To-Live for the Notification.
timestamp Time (in seconds) that the message was saved.
updateid UUID generated when the message is stored to track if the message is updated between a client

reading it and attempting to delete it.

The subscribed channels are stored as chids in a record stored with a blank space set for chidmessageid. Before
storing or delivering a Notification a lookup is done against these chids.

Message Table Rotation (legacy)

As of version 1.45.0, message table rotation can be disabled. This is because DynamoDB now provides automatic
entry expiration. This is controlled in our data by the “expiry” field. (*Note*, field expiration is only available in full
DynamoDB, and is not replicated with the mock DynamoDB API provided for development.) The following feature
is disabled with the no_table_rotation flag set in the autopush_shared.ini configuration file.

If table rotation is disabled, the last message table used will become ‘frozen’ and will be used for all future messages.
While this may not be aesthetically pleasing, it’s more efficient than copying data to a new, generic table. If it’s
preferred, service can be shut down, previous tables dropped, the current table renamed, and service brought up again.

Message Table Rotation information

To avoid costly table scans, autopush uses a rotating message and router table. Clients that haven’t con-
nected in 30-60 days will have their router and message table entries dropped and need to re-register.

Tables are post-fixed with the year/month they are meant for, i.e.

messages_2015_02

Tables must be created and have their read/write units properly allocated by a separate process in advance
of the month switch-over as autopush nodes will assume the tables already exist. Scripts are provided that
can be run weekly to ensure all necessary tables are present, and tables old enough are dropped.

See also:

Table maintenance script: https://github.com/mozilla-services/autopush/blob/master/maintenance.py

Within a few days of the new month, the load on the prior months table will fall as clients transition to the
new table. The read/write units on the prior month may then be lowered.

Rotating Message Table Interaction Rules (legacy)

Due to the complexity of having notifications spread across two tables, several rules are used to avoid losing messages
during the month transition.

The logic for connection nodes is more complex, since only the connection node knows when the client connects, and
how many messages it has read through.

When table rotation is allowed, the router table uses the curmonth field to indicate the last month the client has read
notifications through. This is independent of the last_connect since it is possible for a client to connect, fail to read its

2.1. Architecture 15

https://github.com/mozilla-services/autopush/blob/master/maintenance.py

autopush Documentation, Release 1.58.4

notifications, then reconnect. This field is updated for a new month when the client connects after it has ack’d all the
notifications out of the last month.

To avoid issues with time synchronization, the node the client is connected to acts as the source of truth for when
the month has flipped over. Clients are only moved to the new table on connect, and only after reading/acking all the
notifications for the prior month.

Rules for Endpoints

1. Check the router table to see the current_month the client is on.

2. Read the chan list entry from the appropriate month message table to see if its a valid channel.

If its valid, move to step 3.

3. Store the notification in the current months table if valid. (Note that this step does not copy the blank entry of
valid channels)

Rules for Connection Nodes

After Identification:

1. Check to see if the current_month matches the current month, if it does then proceed normally using the current
months message table.

If the connection node month does not match stored current_month in the clients router table entry, proceed to
step 2.

2. Read notifications from prior month and send to client.

Once all ACKs are received for all the notifications for that month proceed to step 3.

3. Copy the blank message entry of valid channels to the new month message table.

4. Update the router table for the current_month.

During switchover, only after the router table update are new commands from the client accepted.

Handling of Edge Cases:

• Connection node gets more notifications during step 3, enough to buffer, such that the endpoint starts storing
them in the previous current_month. In this case the connection node will check the old table, then the new table
to ensure it doesn’t lose message during the switch.

• Connection node dies, or client disconnects during step 3/4. Not a problem as the reconnect will pick it up at
the right spot.

2.1.4 Push Characteristics

• When the Push server has sent a client a notification, no further notifications will be accepted for delivery
(except in one edge case). In this state, the Push server will reply to the Endpoint with a 503 to indicate it
cannot currently deliver the notification. Once the Push server has received ACKs for all sent notifications, new
notifications can flow again, and a check of storage will be done if the Push server had to reply with a 503. The
Endpoint will put the Notification in storage in this case.

• (Edge Case) Multiple notifications can be sent at once, if a notification comes in during a Storage check, but
before it has completed.

• If a connected client is able to accept a notification, then the Endpoint will deliver the message to the client
completely bypassing Storage. This Notification will be referred to as a Direct Notification vs. a Stored Notifi-
cation.

• Provisioned Write Throughput for the Router table determines how many connections per second can be ac-
cepted across the entire cluster.

16 Chapter 2. Running Autopush

autopush Documentation, Release 1.58.4

• Provisioned Read Throughput for the Router table and Provisioned Write throughput for the Storage table
determine maximum possible notifications per second that can be handled. In theory notification throughput can
be higher than Provisioned Write Throughput on the Storage as connected clients will frequently not require
using Storage at all. Read’s to the Router table are still needed for every notification, whether Storage is hit or
not.

• Provisioned Read Throughput on for the Storage table is an important factor in maximum notification through-
put, as many slow clients may require frequent Storage checks.

• If a client is reconnecting, their Router record will be old. Router records have the node_id cleared optimistically
by Endpoints when the Endpoint discovers it cannot deliver the notification to the Push node on file. If the
conditional delete fails, it implies that the client has during this period managed to connect somewhere again. It’s
entirely possible that the client has reconnected and checked storage before the Endpoint stored the Notification,
as a result the Endpoint must read the Router table again, and attempt to tell the node_id for that client to
check storage. Further action isn’t required, since any more reconnects in this period will have seen the stored
notification.

Push Endpoint Length

The Endpoint URL may seem excessively long. This may seem needless and confusing since the URL consists of the
unique User Agent Identifier (UAID) and the Subscription Channel Identifier (CHID). Both of these are class 4 Uni-
versally Unique Identifiers (UUID) meaning that an endpoint contains 256 bits of entropy (2 * 128 bits). When
used in string format, these UUIDs are always in lower case, dashed format (e.g. “01234567-0123-abcd-0123-
0123456789ab”).

Unfortunately, since the endpoint contains an identifier that can be easily traced back to a specific device, and therefore
a specific user, there is the risk that a user might inadvertently disclose personal information via their metadata. To
prevent this, the server obscures the UAID and CHID pair to prevent casual determination.

As an example, it is possible for a user to get a Push endpoint for two different accounts from the same User Agent.
If the UAID were disclosed, then a site may be able to associate a single user to both of those accounts. In addition,
there are reasons that storing the UAID and CHID in the URL makes operating the server more efficient.

Naturally, we’re always looking at ways to improve and reduce the length of the URL. This is why it’s important to
store the entire length of the endpoint URL, rather than try and optimize in some manner.

2.2 Running Autopush

2.2.1 Overview

To run Autopush, you will need to run at least one connection node, one endpoint node, and a local DynamoDB server
or AWS DynamoDB. The prior section on Autopush architecture documented these components and their relation to
each other.

The recommended way to run the latest development or tagged Autopush release is to use docker. Autopush has
docker images built automatically for every tagged release and when code is merged to master.

If you want to run the latest Autopush code from source then you should follow the Developing Autopush instructions.

The instructions below assume that you want to run Autopush with a local DynamoDB server for testing or local
verification. The docker containers can be run on separate hosts as well, or with AWS DynamoDB instead.

2.2. Running Autopush 17

https://www.docker.com/
https://www.docker.com/

autopush Documentation, Release 1.58.4

2.2.2 Setup

These instructions will yield a locally running Autopush setup with the connection node listening on localhost port
8080, with the endpoint node listening on localhost port 8082. Make sure these ports are available on localhost
before running, or change the configuration to have the Autopush daemons use other ports.

1. Install docker

2. Install docker-compose

3. Create a directory for your docker and Autopush configuration:

$ mkdir autopush-config
$ cd autopush-config

4. Fetch the latest docker-compose.yml file:

$ curl -O https://raw.githubusercontent.com/mozilla-services/autopush/
→˓master/docker-compose.yml

Note: The docker images used take approximately 1.5 GB of disk-space, make sure you have appropriate free-space
before proceeding.

Generate a Crypto-Key

As the Cryptography section notes, you will need a CRYPTO_KEY to run both of the Autopush daemons. To generate
one with the docker image:

$ docker run -t -i bbangert/autopush autokey
CRYPTO_KEY="hkclU1V37Dnp-0DMF9HLe_40Nnr8kDTYVbo2yxuylzk="

Store the key for later use (including any trailing =).

2.2.3 Start Autopush

Once you’ve completed the setup and have a crypto key, you can run a local Autopush with a single command:

$ CRYPTO_KEY="hkclU1V37Dnp-0DMF9HLe_40Nnr8kDTYVbo2yxuylzk=" docker-compose up

docker-compose will start up three containers, two for each Autopush daemon, and a third for DynamoDB.

By default, the following services will be exposed:

ws://localhost:8080/ - websocket server

http://localhost:8082/ - HTTP Endpoint Server (See the HTTP API)

You could set the CRYPTO_KEY as an environment variable if you are using Docker. If you are running these pro-
grams “stand-alone” or outside of docker-compose, you may setup a more thorough configuration using config files as
documented below.

Note:

The load-tester can be run against it or you can run Firefox with the local Autopush per the Firefox Testing docs.

18 Chapter 2. Running Autopush

https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

autopush Documentation, Release 1.58.4

2.2.4 Configuration

Autopush can be configured in three ways; by option flags, by environment variables, and by configuration files.
Autopush uses three configuration files. These files use standard ini formatting similar to the following:

A comment description
;a_disabled_option
;another_disabled_option=default_value
option=value

Options can either have values or act as boolean flags. If the option is a flag it is either True if enabled, or False if
disabled. The configuration files are usually richly commented, and you’re encouraged to read them to learn how to
set up your installation of autopush.

Note: any line that does not begin with a # or ; is considered an option line. if an unexpected option is present in a
configuration file, the application will fail to start.

Configuration files can be located in:

• in the /etc/ directory

• in the configs subdirectory

• in the $HOME or current directory (prefixed by a period ‘.’)

The three configuration files are:

• autopush_connection.ini - contains options for use by the websocket handler. This file’s path can be specified
by the --config-connection option.

• autopush_shared.ini - contains options shared between the connection and endpoint handler. This file’s path can
be specified by the --config-shared option.

• autopush_endpoint.ini - contains options for the HTTP handlers This file’s path can be specified by the
--config-endpoint option.

Sample Configurations

Three sample configurations, a base config, and a config for each Autopush daemon can be found at https://github.
com/mozilla-services/autopush/tree/master/config

These can be downloaded and modified as desired.

Config Files with Docker

To use a configuration file with docker, ensure the config files are accessible to the user running docker-compose.
Then you will need to update the docker-compose.yml to use the config files and make them available to the
appropriate docker containers.

Mounting a config file to be available in a docker container is fairly simple, for instance, to mount a lo-
cal file autopush_connection.ini into a container as /etc/autopush_connection.ini, update the
autopush section of the docker-compose.yml to be:

volumes:
- ./boto-compose.cfg:/etc/boto.cfg:ro
- ./autopush_connection.ini:/etc/autopush_connection.ini

2.2. Running Autopush 19

https://github.com/mozilla-services/autopush/tree/master/config
https://github.com/mozilla-services/autopush/tree/master/config
https://www.docker.com/
https://docs.docker.com/compose/

autopush Documentation, Release 1.58.4

Autopush automatically searches for a configuration file at this location so nothing else is needed.

Note: The docker-compose.yml file provides a number of overrides as environment variables, such as CRYPTO_KEY. If
these values are not defined, they are submitted as “”, which will prevent values from being read from the config files.
In the case of CRYPTO_KEY, a new, random key is automatically generated, which will result in existing endpoints
no longer being valid. It is recommended that for docker based images, that you *always* supply a CRYPTO_KEY as
part of the run command.

Notes on GCM/FCM support

Note: GCM is no longer supported by Google. Some legacy users can still use GCM, but it is strongly recommended
that applications use FCM.

Autopush is capable of routing messages over Firebase Cloud Messaging for android devices. You will need to set up
a valid FCM account. Once you have an account open the Google Developer Console:

• create a new project. Record the Project Number as “SENDER_ID”. You will need this value for your android
application.

• in the .autopush_endpoint server config file:

– add fcm_enabled to enable FCM routing.

– add fcm_creds. This is a json block with the following format:

{“app id”: {“projectid”: “project id name”, “auth”: “path to Private Key File”}, . . . }

where:

app_id: the URL identifier to be used when registering endpoints. (e.g. if “reference_test” is chosen here, registration
requests should go to https://updates.push.services.mozilla.com/v1/fcm/reference_test/registration

project id name: the name of the Project ID as specified on the https://console.firebase.google.com/ Project Settings
> General page.

path to Private Key File: path to the Private Key file provided by the Settings > Service accounts > Firebase Admin
SDK page. NOTE: This is *NOT* the “google-services.json” config file.

Additional notes on using the FCM bridge are available on the wiki.

20 Chapter 2. Running Autopush

https://firebase.google.com/docs/cloud-messaging/
https://console.firebase.google.com/
https://github.com/mozilla-services/autopush/wiki/Bridging-Via-GCM

CHAPTER 3

Developing Autopush

For developers wishing to work with the latest autopush source code, it’s recommended that you first familiarize
yourself with running Autopush before proceeding.

3.1 Installing

3.1.1 System Requirements

Autopush requires the following to be installed. Since each system has different methods and package names, it’s best
to search for each package.

• Python 2.7.7 (or later 2.7.x), either

– PyPy 5.0.1 or later or

– CPython compiled with the following flags:

* –enable-unicode=usc4 –enable-ipv6

• build-essential (a meta package that includes):

– autoconf

– automake

– gcc

– make

• pypy or python (CPython) development (header files)

• libffi development

• openssl development

• python virtualenv

• git

21

autopush Documentation, Release 1.58.4

For instance, if installing on a Fedora or RHEL-like Linux (e.g. an Amazon EC2 instance):

$ sudo yum install autoconf automake gcc make libffi-devel \
openssl-devel pypy pypy-devel python-virtualenv git -y

Or a Debian based system (like Ubuntu):

$ sudo apt-get install build-essential libffi-dev \
libssl-dev pypy-dev python-virtualenv git --assume-yes

Autopush uses the Boto3 python library. Be sure to properly set up your boto config file.

Notes on OS X

autopush depends on the Python cryptography library, which requires OpenSSL. If you’re installing autopush on OS X
with a custom version of OpenSSL, you’ll need to set the ARCHFLAGS environment variable, and add your OpenSSL
library path to LDFLAGS and CFLAGS before running make:

export ARCHFLAGS="-arch x86_64"
Homebrew installs OpenSSL to `/usr/local/opt/openssl` instead of
`/usr/local`.
export LDFLAGS="-L/usr/local/lib" CFLAGS="-I/usr/local/include"

3.1.2 Check-out the Autopush Repository

You should now be able to check-out the autopush repository.

$ git clone https://github.com/mozilla-services/autopush.git

Alternatively, if you’re planning on submitting a patch/pull-request to autopush then fork the repo and follow the
Github Workflow documented in Mozilla Push Service - Code Development.

3.1.3 Python 2.7.7+ w/virtualenv

You will need virtualenv installed per the above requirements. Set up your virtual environment by running the
following (if using PyPy, you’ll likely need to specify the -p <path to pypy> option):

$ virtualenv -p `which pypy` .

Then run the Makefile with make to setup the application.

3.1.4 Scripts

After installation of autopush the following command line utilities are available in the virtualenv bin/ directory:

autopush Runs a Connection Node
autoendpoint Runs an Endpoint Node
endpoint_diagnostic Runs Endpoint diagnostics
autokey Endpoint encryption key generator

You will need to have a boto config file file or AWS environment keys setup before the first 3 utilities will run properly.

22 Chapter 3. Developing Autopush

https://boto3.readthedocs.io/en/latest/
http://boto3.readthedocs.io/en/docs/guide/quickstart.html#configuration
https://cryptography.io/en/latest/installation
http://mozilla-push-service.readthedocs.io/en/latest/development/#code-development
http://boto3.readthedocs.io/en/docs/guide/quickstart.html#configuration

autopush Documentation, Release 1.58.4

3.1.5 Building Documentation

To build the documentation, you will need additional packages installed:

$ pip install -r doc-requirements.txt

You can then build the documentation:

$ cd docs
$ make html

3.1.6 Using a Local DynamoDB Server

Amazon supplies a Local DynamoDB Java server to use for local testing that implements the complete DynamoDB
API. This is used for automated unit testing on Travis and can be used to run autopush locally for testing.

You will need the Java JDK 6.x or newer.

To setup the server locally:

$ mkdir ddb
$ curl -sSL http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_
→˓latest.tar.gz | tar xzvC ddb/
$ java -Djava.library.path=./ddb/DynamoDBLocal_lib -jar ./ddb/DynamoDBLocal.jar -
→˓sharedDb -inMemory

An example boto config file is provided in automock/boto.cfg that directs autopush to your local DynamoDB
instance.

Configuring for Third Party Bridge services:

Configuring for the APNS bridge

APNS requires a current Apple Developer License for the platform or platforms you wish to bridge to (e.g. iOS,
desktop, etc.). Once that license has been acquired, you will need to create and export a valid .p12 type key file. For
this document, we will concentrate on creating an iOS certificate.

Create the App ID

First, you will need an Application ID. If you do not already have an application, you will need to create an application
ID. For an App ID to use Push Notifications, it must be created as an Explicit App ID. Please be sure that under “App
Services” you select Push Notifications. Once these values are set, click on [Continue].

Confirm that the app settings are as you desire and click [Register], or click [Back] and correct them. Push Notifica-
tions should appear as “Configurable”.

Create the Certificate

Then Create a new certificate. Select “Apple Push Notification service SSL” for either Development or Production,
depending on intended usage of the certificate. “Development”, in this case, means a certificate that will not be used by
an application released for general public use, but instead only for personal or team development. This is also known
as a “Sandbox” application and will require setting the “use_sandbox” flag. Once the preferred option is selected,
click [Continue].

3.1. Installing 23

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
http://boto3.readthedocs.io/en/docs/guide/quickstart.html#configuration
https://developer.apple.com/account/ios/identifier/bundle/create
https://developer.apple.com/account/ios/identifier/bundle/create
https://developer.apple.com/account/ios/certificate/create

autopush Documentation, Release 1.58.4

Select the App ID that matches the Application that will use Push Notifications. Several Application IDs may be
present, be sure to match the correct App ID. This will be the App ID which will act as the recipient bridge for Push
Notifications. Select [Continue].

Follow the on-screen instructions to generate a CSR file, click [Continue], and upload the CSR.

Download the newly created iOSTeam_Provisioning_Profile_.mobileprovision keyset, and import it into your Key-
Chain Access app.

Exporting the .p12 key set

In KeyChain Access, for the login keychain, in the Certificates category, you should find an Apple Push Services:
your AppID certificate. Right click on this certificate and select Export “Apple Push Services:”. . . . Provide the
file with a reasonably unique name, such as “Push_Production_APNS_Keys.p12”, so that you can find it easily later.
You may wish to secure these keys with a password.

Converting .p12 to PEM

You will need to convert the .p12 file to PEM format. openssl can perform these steps for you. A simple script you
could use might be:

#!/bin/bash
echo Converting $1 to PEM
openssl pkcs12 -in $1 -out $1_cert.pem -clcerts -nokeys
openssl pkcs12 -in $1 -out $1_key.pem -nocerts -nodes

This will divide the p12 key into two components that can be read by the autopush application.

Sending the APNS message

The APNS post message contains JSON formatted data similar to the following:

{
"aps": {

"content-available": 1
},
"key": "value",
...

}

aps is reserved as a sub-dictionary. All other key: value slots are open.

In addition, you must specify the following headers:

• apns-id: A lowercase, dash formatted UUID for this message.

• apns-priority: Either 10 for Immediate delivery or 5 for delayable delivery.

• apns-topic: The bundle ID for the recipient application. This must match the bundle ID of the AppID used to
create the “Apple Push Services:. . . ” certificate. It usually has the format of com.example.ApplicationName.

• apns-expiration: The timestamp for when this message should expire in UTC based seconds. A zero (“0”)
means immediate expiration.

24 Chapter 3. Developing Autopush

autopush Documentation, Release 1.58.4

Handling APNS responses

APNS returns a status code and an optional JSON block describing the error. A list of these responses are provided
in the APNS documentation (Note, Apple may change the document locaiton without warning. you may be able to
search using DeviceTokenNotForTopic or similar error messages.)

Configuring the Amazon Device Messaging Bridge

ADM requires credentials that are provided on the Amazon Developer portal page. Note, this is different than the
Amazon Web Services page.

If you’ve not already done so, create a new App under the Apps & Services tab. You will need to create an app so that
you can associate a Security Profile to it.

Device Messaging can be created by generating a new Security Profile (located under the Security Profiles sub-tab.
If specifying for Android or Kindle, you will need to provide the Java Package name you’ve used to identify the
application (e.g. org.mozilla.services.admpushdemo)

You will need to provide the MD5 Signature and SHA256 Signature for the package’s Certificate.

Getting the Key Signatures

Amazon provides some instructions for getting the signature values of the CERT.RSA file. Be aware that android and
ADM are both moving targets and some information may no longer be correct.

I was able to use the keytool to fetch out the SHA256 signature, but had to get the MD5 signature from inside Android
Studio by looking under the Gradle tab, then under the Project (root)

> Task
> android

* signingReport

You do not need the SHA1: key provided from the signingReport output.

Once the fields have been provided an API Key will be generated. This is a long JWT that must be stored in a file
named api_key.txt located in the /assets directory. The file should only contain the key. Extra white space, comments,
or other data will cause the key to fail to be read.

This file MUST be included with any client application that uses the ADM bridge. Please note that the only way to
test ADM messaging features is to side load the application on a FireTV or Kindle device.

Configuring the server

The server requires the Client ID and Client Secret from the ADM Security Profile page. Since a given server may
need to talk to different applications using different profiles, the server can be configured to use one of several profiles.

The autopush_endpoint.ini file may contain the adm_creds option. This is a JSON structure similar to the APNS
configuration. The configuration can specify one or more “profiles”. Each profile contains a “client_id” and
“client_secret”.

For example, let’s say that we want to have a “dev” (for developers) and a “stage” (for testing). We could specify the
profiles as:

3.1. Installing 25

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CommunicatingwithAPNs.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CommunicatingwithAPNs.html
https://developer.apple.com/search/?q=DeviceTokenNotForTopic&type=Guides
https://developer.amazon.com/docs/adm/overview.html
https://developer.amazon.com/myapps.html
https://developer.amazon.com/docs/login-with-amazon/register-android.html#app-signatures-and-keys

autopush Documentation, Release 1.58.4

{
"dev": {

"client_id": "amzn1.application.0e7299...",
"client_secret": "559dac53757a571d2fee78e5fcb2..."

},
"stage": {

"client_id": "amzn1.application.0e7300...",
"client_secret": "589dcc53957a971d2fee78e5fee4..."

},
}

For the configuration, we’d collapse this to one line, e.g.

adm_creds={"dev":{"client_id":"amzn1.application.0e7299...","client_secret":
→˓"559dac53757a571d2fee78e5fcb2..."},"stage":{"client_id":"amzn1.application.0e7300...
→˓","client_secret": "589dcc53957a971d2fee78e5fee4..."},}

Much like other systems, a sender invokes the profile by using it in the Registration URL. e.g. to register a new
endpoint using the dev profile:

https://push.service.mozilla.org/v1/adm/dev/registration/

3.2 Testing

3.2.1 Testing Configuration

When testing, it’s important to reduce the number of potential conflicts as much as possible. To that end, it’s advised
to have as clean a testing environment as possible before running tests.

This includes:

• Making sure notifications are not globally blocked by your browser.

• “Do Not Disturb” or similar “distraction free” mode is disabled on your OS

• You run a “fresh” Firefox profile (start firefox –P to display the profile picker) which does not have extra exten-
sions or optional plug-ins running. Running firefox –P –no-remote allows two different firefox profiles run at
the same time.)

You may find it useful to run firefox in a Virtual Machine (like VirtualBox or VMWare), but this is not required.

In addition, it may be useful to open the Firefox Brower Console (Ctrl+Shift+J) as well as the Firefox Web Console
(Ctrl+Shift+K). Both are located under the Web Developer sub-menu.

3.2.2 Running Tests

If you plan on doing development and testing, you will need to install some additional packages.

$ bin/pip install -r test-requirements.txt

Once the Makefile has been run, you can run make test to run the test suite.

Note: Failures may occur if a .boto file exists in your home directory. This file should be moved elsewhere before
running the tests.

26 Chapter 3. Developing Autopush

autopush Documentation, Release 1.58.4

Disabling Integration Tests

make test runs the tox program which can be difficult to break for debugging purposes. The following bash script
has been useful for running tests outside of tox:

#! /bin/bash
mv autopush/tests/test_integration.py{,.hold}
mv autopush/tests/test_logging.py{,.hold}
bin/nosetests -sv autopush
mv autopush/tests/test_integration.py{.hold,}
mv autopush/tests/test_logging.py{.hold,}

This script will cause the integration and logging tests to not run.

3.2.3 Firefox Testing

To test a locally running Autopush with Firefox, you will need to edit several config variables in Firefox.

1. Open a New Tab.

2. Go to about:config in the Location bar and hit Enter, accept the disclaimer if it’s shown.

3. Search for dom.push.serverURL, make a note of the existing value (you can right-click the preference and
choose Reset to restore the default).

4. Double click the entry and change it to ws://localhost:8080/.

5. Right click in the page and choose New -> Boolean, name it dom.push.testing.
allowInsecureServerURL and set it to true.

You should then restart Firefox to begin using your local Autopush.

Debugging

On Android, you can set dom.push.debug to enable debug logging of Push via adb logcat.

For desktop use, you can set dom.push.loglevel to "debug". This will log all push messages to the Browser
Console (Tools > Web Developer > Browser Console).

3.3 Release Process

Autopush has a regular 2-3 week release to production depending on developer and QA availability. The developer
creating a release should handle all aspects of the following process as they’re done closely in order and time.

3.3.1 Versions

Autopush uses a {major}.{minor}.{patch} version scheme, new {major} versions are only issued if back-
wards compatibility is affected. Patch versions are used if a critical bug occurs after production deployment that
requires a bug fix immediately.

3.3. Release Process 27

autopush Documentation, Release 1.58.4

3.3.2 Dev Releases

When changes are committed to the master branch, an operations Jenkins instance will build and deploy the code
automatically to the dev environment.

The development environment can be verified at its endpoint/wss endpoints:

• Websocket: wss://autopush.dev.mozaws.net/

• Endpoint: https://updates-autopush.dev.mozaws.net/

3.3.3 Stage/Production Releases

Pre-Requisites

To create a release, you will need appropriate access to the autopush GitHub repository with push permission.

You will also need clog installed to create the CHANGELOG.md update.

Release Steps

In these steps, the {version} refers to the full version of the release.

i.e. If a new minor version is being released after 1.21.0, the {version} would be 1.22.0.

1. Switch to the master branch of autopush.

2. git pull to ensure the local copy is completely up-to-date.

3. git diff origin/master to ensure there are no local staged or uncommited changes.

4. Run tox locally to ensure no artifacts or other local changes that might break tests have been introduced.

5. Change to the release branch.

If this is a new major/minor release, git checkout -b release/{major}.{minor} to create a new
release branch.

If this is a new patch release, you will first need to ensure you have the minor release branch checked out, then:

1. git checkout release/{major}.{minor}

2. git pull to ensure the branch is up-to-date.

3. git merge master to merge the new changes into the release branch.

Note that the release branch does not include a ‘‘{patch}‘‘ component.

6. Edit autopush/__init__.py so that the version number reflects the desired release version.

7. Run clog --setversion {version}, verify changes were properly accounted for in CHANGELOG.md.

8. git add CHANGELOG.md autopush/__init__.py to add the two changes to the new release commit.

9. git commit -m "chore: tag {version}" to commit the new version and record of changes.

10. git tag -s -m "chore: tag {version}" {version} to create a signed tag of the current
HEAD commit for release.

11. git push --set-upstream origin release/{major}.{minor} to push the commits to a new
origin release branch.

12. git push --tags origin release/{major}.{minor} to push the tags to the release branch.

28 Chapter 3. Developing Autopush

https://updates-autopush.dev.mozaws.net/
https://github.com/clog-tool/clog-cli

autopush Documentation, Release 1.58.4

13. Submit a pull request on github to merge the release branch to master.

14. Go to the autopush releases page, you should see the new tag with no release information under it.

15. Click the Draft a new release button.

16. Enter the tag for Tag version.

17. Copy/paste the changes from CHANGELOG.md into the release description omitting the top 2 lines (the a name
HTML and the version) of the file.

Keep these changes handy, you’ll need them again shortly.

18. Once the release branch pull request is approved and merged, click Publish Release.

19. File a bug for stage deployment in Bugzilla, in the Cloud Services product, under the Operations:
Deployment Requests component. It should be titled Please deploy autopush {major}.
{minor} to STAGE and include the changes in the Description along with any additional instructions to
operations regarding deployment changes and special test cases if needed for QA to verify.

At this point, QA will take-over, verify stage, and create a production deployment Bugzilla ticket. QA will also
schedule production deployment for the release.

3.4 Coding Style Guide

Autopush uses Python styling guides based on PEP8 and PEP257.

3.4.1 Exceptions

• Single sentence docstrings are formatted the same way as a single line docstring, but may not always include
ending punctuation.

• File level docstrings may not include a line break before the first line of code.

3.4. Coding Style Guide 29

https://github.com/mozilla-services/autopush/releases
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

autopush Documentation, Release 1.58.4

30 Chapter 3. Developing Autopush

CHAPTER 4

Source Code

All source code is available on github under autopush.

Code Documentation

4.1 Code Documentation

Comprehensive code documentation for autopush is available within. The code documentation is organized alphabet-
ically by module name.

4.1.1 autopush.config

Autopush Config Object and Setup

31

https://github.com/mozilla-services/autopush

autopush Documentation, Release 1.58.4

class autopush.config.AutopushConfig(debug=False, crypto_key=None,
bear_hash_key=NOTHING, human_logs=True, host-
name=None, port=None, resolve_hostname=False,
router_scheme=None, router_hostname=None,
router_port=None, endpoint_scheme=None, end-
point_hostname=None, endpoint_port=None,
proxy_protocol_port=None, memusage_port=None,
statsd_host=’localhost’, statsd_port=8125, mega-
phone_api_url=None, megaphone_api_token=None,
megaphone_poll_interval=30, data-
dog_api_key=None, datadog_app_key=None,
datadog_flush_interval=None,
router_table={’tablename’: ’router’}, mes-
sage_table={’tablename’: ’message’}, pre-
flight_uaid=’deadbeef00000000deadbeef00000000’,
ssl=NOTHING, router_ssl=NOTHING,
client_certs=None, router_conf=NOTHING,
connect_timeout=0.5, max_data=4096,
env=’development’, ami_id=None,
cors=False, hello_timeout=0,
msg_limit=100, auto_ping_interval=None,
auto_ping_timeout=None, max_connections=None,
close_handshake_timeout=None, notifica-
tion_legacy=False, use_cryptography=False,
sts_max_age=31536000, no_sslcontext_cache=False,
aws_ddb_endpoint=None, al-
low_table_rotation=True)

Main Autopush Settings Object

enable_tls_auth
Whether TLS authentication w/ client certs is enabled

classmethod from_argparse(ns, **kwargs)
Create an instance from argparse/additional kwargs

make_endpoint(uaid, chid, key=None)
Create an v1 or v2 WebPush endpoint from the identifiers.

Both endpoints use bytes instead of hex to reduce ID length. v1 is the uaid + chid v2 is the uaid + chid +
sha256(key).bytes

Parameters

• uaid – User Agent Identifier

• chid – Channel or Subscription ID

• key – Optional Base64 URL-encoded application server key

Returns Push endpoint

parse_endpoint(metrics, token, version=’v1’, ckey_header=None, auth_header=None)
Parse an endpoint into component elements of UAID, CHID and optional key hash if v2

Parameters

• token – The obscured subscription data.

• version – This is the API version of the token.

32 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

• ckey_header – the Crypto-Key header bearing the public key (from Crypto-Key:
p256ecdsa=)

• auth_header – The Authorization header bearing the VAPID info

Raises ValueError – In the case of a malformed endpoint.

Returns a dict containing (uaid=UAID, chid=CHID, public_key=KEY)

__init__(debug=False, crypto_key=None, bear_hash_key=NOTHING, human_logs=True,
hostname=None, port=None, resolve_hostname=False, router_scheme=None,
router_hostname=None, router_port=None, endpoint_scheme=None, end-
point_hostname=None, endpoint_port=None, proxy_protocol_port=None,
memusage_port=None, statsd_host=’localhost’, statsd_port=8125, mega-
phone_api_url=None, megaphone_api_token=None, megaphone_poll_interval=30,
datadog_api_key=None, datadog_app_key=None, datadog_flush_interval=None,
router_table={’tablename’: ’router’}, message_table={’tablename’: ’mes-
sage’}, preflight_uaid=’deadbeef00000000deadbeef00000000’, ssl=NOTHING,
router_ssl=NOTHING, client_certs=None, router_conf=NOTHING, con-
nect_timeout=0.5, max_data=4096, env=’development’, ami_id=None, cors=False,
hello_timeout=0, msg_limit=100, auto_ping_interval=None, auto_ping_timeout=None,
max_connections=None, close_handshake_timeout=None, notification_legacy=False,
use_cryptography=False, sts_max_age=31536000, no_sslcontext_cache=False,
aws_ddb_endpoint=None, allow_table_rotation=True)

x.__init__(. . .) initializes x; see help(type(x)) for signature

class autopush.config.SSLConfig(key=None, cert=None, dh_param=None)
AutopushSSLContextFactory configuration

cf(**kwargs)
Build our AutopushSSLContextFactory (if configured)

class autopush.config.DDBTableConfig(tablename, read_throughput=5, write_throughput=5)
A DynamoDB Table’s configuration

4.1.2 autopush.db

Database Interaction

WebPush Sort Keys

Messages for WebPush are stored using a partition key + sort key, originally the sort key was:

CHID : Encrypted(UAID: CHID)

The encrypted portion was returned as the Location to the Application Server. Decrypting it resulted in enough
information to create the sort key so that the message could be deleted and located again.

For WebPush Topic messages, a new scheme was needed since the only way to locate the prior message is the UAID
+ CHID + Topic. Using Encryption in the sort key is therefore not useful since it would change every update.

The sort key scheme for WebPush messages is:

VERSION : CHID : TOPIC

To ensure updated messages are not deleted, each message will still have an update-id key/value in its item.

Non-versioned messages are assumed to be original messages from before this scheme was adopted.

VERSION is a 2-digit 0-padded number, starting at 01 for Topic messages.

4.1. Code Documentation 33

https://docs.python.org/3/library/exceptions.html#ValueError

autopush Documentation, Release 1.58.4

DynamoDB Table Functions

autopush.db.create_router_table(tablename=’router’, read_throughput=5, write_throughput=5,
boto_resource=None)

Create a new router table

The last_connect index is a value used to determine the last month a user was seen in. To prevent hot-keys on
this table during month switchovers the key is determined based on the following scheme:

(YEAR)(MONTH)(DAY)(HOUR)(0001-0010)

Note that the random key is only between 1-10 at the moment, if the key is still too hot during production the
random range can be increased at the cost of additional queries during GC to locate expired users.

autopush.db.get_router_table(tablename=’router’, read_throughput=5, write_throughput=5,
boto_resource=None)

Get the main router table object

Creates the table if it doesn’t already exist, otherwise returns the existing table.

Utility Functions

autopush.db.preflight_check(message, router, uaid=’deadbeef00000000deadbeef00000000’)
Performs a pre-flight check of the router/message to ensure appropriate permissions for operation.

Failure to run correctly will raise an exception.

DynamoDB Table Class Abstractions

class autopush.db.Router(conf, metrics, resource=None)
Create a Router table abstraction on top of a DynamoDB Table object

__init__(conf, metrics, resource=None)
Create a new Router object

Parameters

• conf – configuration data.

• metrics – Metrics object that implements the autopush.metrics.IMetrics in-
terface.

• resource – Boto3 resource handle

get_uaid(uaid)
Get the database record for the UAID

Raises ItemNotFound if there is no record for this UAID.
ProvisionedThroughputExceededException if dynamodb table exceeds
throughput.

register_user(*args, **kwargs)
Register this user

If a record exists with a newer connected_at, then the user will not be registered.

Returns Whether the user was registered or not.

Raises ProvisionedThroughputExceededException if dynamodb table exceeds
throughput.

34 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

drop_user(*args, **kwargs)
Drops a user record

update_message_month(*args, **kwargs)
Update the route tables current_message_month

Note that we also update the last_connect at this point since webpush users when connecting will always
call this once that month. The current_timestamp is also reset as a new month has no last read timestamp.

clear_node(*args, **kwargs)
Given a router item and remove the node_id

The node_id will only be cleared if the connected_at matches up with the item’s connected_at.

Returns Whether the node was cleared or not.

Raises ProvisionedThroughputExceededException if dynamodb table exceeds
throughput.

4.1.3 autopush.exceptions

Autopush Exceptions

class autopush.exceptions.AutopushException
Parent Autopush Exception

class autopush.exceptions.RouterException(message, status_code=500, response_body=”,
router_data=None, headers=None,
log_exception=True, errno=None,
logged_status=None, **kwargs)

Exception if routing has failed, may include a custom status_code and body to write to the response.

__init__(message, status_code=500, response_body=”, router_data=None, headers=None,
log_exception=True, errno=None, logged_status=None, **kwargs)

Create a new RouterException

4.1.4 autopush.logging

Custom Logging Setup

class autopush.logging.PushLogger(logger_name, log_level=’debug’, log_format=’json’,
log_output=’stdout’, sentry_dsn=None, fire-
hose_delivery_stream=None)

Twisted LogObserver implementation

Supports firehose delivery, Raven exception reporting, and json/test console debugging output.

__init__(logger_name, log_level=’debug’, log_format=’json’, log_output=’stdout’, sen-
try_dsn=None, firehose_delivery_stream=None)

x.__init__(. . .) initializes x; see help(type(x)) for signature

__call__(...) <==> x(...)

class autopush.logging.FirehoseProcessor(stream_name, maxsize=0)
Batches log events for sending to AWS FireHose

__init__(stream_name, maxsize=0)
x.__init__(. . .) initializes x; see help(type(x)) for signature

4.1. Code Documentation 35

autopush Documentation, Release 1.58.4

4.1.5 autopush.main

autopush/autoendpoint daemon scripts

Daemon Script Entry Points

class autopush.main.ConnectionApplication(conf, resource=None)
The autopush application

static parse_args(config_files, args)
Parse out connection node arguments for an autopush node

websocket_factory
alias of autopush.websocket.PushServerFactory

websocket_site_factory
alias of autopush.websocket.ConnectionWSSite

setup(rotate_tables=True)
Initialize the services

add_internal_router()
Start the internal HTTP notification router

add_websocket()
Start the public WebSocket server

class autopush.main.EndpointApplication(conf, resource=None)
The autoendpoint application

static parse_args(config_files, args)
Parses out endpoint arguments for an autoendpoint node

setup(rotate_tables=True)
Initialize the services

add_endpoint()
Start the Endpoint HTTP router

Common Root

class autopush.main.AutopushMultiService(conf, resource=None)

static parse_args(config_files, args)
Parse command line args via argparse

setup(rotate_tables=True)
Initialize the services

add_maybe_ssl(port, factory, ssl_cf)
Add a Service from factory, optionally behind TLS

add_timer(*args, **kwargs)
Add a TimerService

add_memusage()
Add the memusage Service

36 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

run()
Start the services and run the reactor

classmethod _from_argparse(ns, resource=None, **kwargs)
Create an instance from argparse/additional kwargs

classmethod main(args=None, use_files=True, resource=None)
Entry point to autopush’s main command line scripts.

aka autopush/autoendpoint.

4.1.6 autopush.metrics

Metrics interface and implementations

Interface

class autopush.metrics.IMetrics(*args, **kwargs)
Metrics interface

Each method except __init__() and start() must be implemented.

Additional kwargs may be recorded as additional metric tags for metric systems that support it, otherwise they
should be ignored.

__init__(*args, **kwargs)
Setup the metrics

start()
Start any connection needed for metric transmission

increment(name, count=1, **kwargs)
Increment a counter for a metric name

gauge(name, count, **kwargs)
Record a gauge for a metric name

timing(name, duration, **kwargs)
Record a timing in ms for a metric name

Implementations

class autopush.metrics.SinkMetrics(*args, **kwargs)
Exists to ignore metrics when metrics are not active

increment(name, count=1, **kwargs)
Increment a counter for a metric name

gauge(name, count, **kwargs)
Record a gauge for a metric name

timing(name, duration, **kwargs)
Record a timing in ms for a metric name

4.1. Code Documentation 37

autopush Documentation, Release 1.58.4

4.1.7 autopush.protocol

Basic Protocol for ignoring data

class autopush.protocol.IgnoreBody(response, deferred)
A protocol that discards any data it receives

This is necessary to support persistent HTTP connections. If the response body is never read using Response.
deliverBody, or stopProducing() is called, the connection will not be reused.

classmethod ignore(response)
Class method helper for ignoring the response

dataReceived(data)
Ignore received data

connectionLost(reason)
Relay back the loss of connection to the deferred

4.1.8 autopush.router.apnsrouter

APNS Router

class autopush.router.apnsrouter.APNSRouter(conf, router_conf, metrics,
load_connections=True)

APNS Router Implementation

_connect(rel_channel, load_connections=True)
Connect to APNS

Parameters

• rel_channel (str) – Release channel name (e.g. Firefox. FirefoxBeta,..)

• load_connections (bool) – (used for testing)

Returns APNs to be stored under the proper release channel name.

Return type apns.APNs

__init__(conf, router_conf, metrics, load_connections=True)
Create a new APNS router and connect to APNS

Parameters

• conf (autopush.config.AutopushConfig) – Configuration settings

• router_conf (dict) – Router specific configuration

• load_connections (bool) – (used for testing)

register(uaid, router_data, app_id, *args, **kwargs)
Register an endpoint for APNS, on the app_id release channel.

This will validate that an APNs instance token is in the router_data,

Parameters

• uaid – User Agent Identifier

• router_data – Dict containing router specific configuration info

• app_id – The release channel identifier for cert info lookup

38 Chapter 4. Source Code

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

autopush Documentation, Release 1.58.4

amend_endpoint_response(response, router_data)
Stubbed out for this router

route_notification(notification, uaid_data)
Start the APNS notification routing, returns a deferred

Parameters

• notification (autopush.endpoint.Notification) – Notification data to
send

• uaid_data (dict) – User Agent specific data

_route(notification, router_data)
Blocking APNS call to route the notification

Parameters

• notification (dict) – Notification data to send

• router_data (dict) – Pre-initialized data for this connection

class autopush.router.apns2.APNSClient(cert_file, key_file, topic, alt=False,
use_sandbox=False, max_connections=20, log-
ger=None, metrics=None, load_connections=True,
max_retry=2)

__init__(cert_file, key_file, topic, alt=False, use_sandbox=False, max_connections=20, log-
ger=None, metrics=None, load_connections=True, max_retry=2)

Create the APNS client connector.

The cert_file and key_file can be derived from the exported .p12 Apple Push Services: *bundleID* **
key contained in the **Keychain Access application. To extract the proper PEM formatted data, you can
use the following commands:

` openssl pkcs12 -in file.p12 -out apns_cert.pem -clcerts -nokeys
openssl pkcs12 -in file.p12 -out apns_key.pem -nocerts -nodes `

The topic is the Bundle ID of the bridge recipient iOS application. Since the cert needs to be tied directly
to an application, the topic is usually similar to “com.example.MyApplication”.

Parameters

• cert_file (str) – Path to the PEM formatted APNs certification file.

• key_file (str) – Path to the PEM formatted APNs key file.

• topic (str) – The Bundle ID that identifies the assoc. iOS app.

• alt (bool) – Use the alternate APNs publication port (if 443 is blocked)

• use_sandbox (bool) – Use the development sandbox

• max_connections (int) – Max number of pooled connections to use

• logger (logger) – Status logger

• metrics (autopush.metrics.IMetric) – Metric recorder

• load_connections (bool) – used for testing

• max_retry (int) – Number of HTTP2 transmit attempts

send(router_token, payload, apns_id, priority=True, topic=None, exp=None)
Send the dict of values to the remote bridge

This sends the raw data to the remote bridge application using the APNS2 HTTP2 API.

4.1. Code Documentation 39

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

autopush Documentation, Release 1.58.4

Parameters

• router_token (str) – APNs provided hex token identifying recipient

• payload (dict) – Data to send to recipient

• priority (bool) – True is high priority, false is low priority

• topic (str) – BundleID for the recipient application (overides default)

• exp (timestamp) – Message expiration timestamp

4.1.9 autopush.router.gcm

GCM Router

class autopush.router.gcm.GCMRouter(conf, router_conf, metrics)
GCM Router Implementation

__init__(conf, router_conf, metrics)
Create a new GCM router and connect to GCM

register(uaid, router_data, app_id, *args, **kwargs)
Validate that the GCM Instance Token is in the router_data

route_notification(notification, uaid_data)
Start the GCM notification routing, returns a deferred

_route(notification, uaid_data)
Blocking GCM call to route the notification

_error(err, status, **kwargs)
Error handler that raises the RouterException

_process_reply(reply, uaid_data, ttl, notification)
Process GCM send reply

4.1.10 autopush.router.gcmclient

class autopush.router.gcmclient.GCM(api_key=None, logger=None, metrics=None,
endpoint=’gcm-http.googleapis.com/gcm/send’, **op-
tions)

Primitive HTTP GCM service handler.

__init__(api_key=None, logger=None, metrics=None, endpoint=’gcm-
http.googleapis.com/gcm/send’, **options)

Initialize the GCM primitive.

Parameters

• api_key (str) – The GCM API key (from the Google developer console)

• logger (logger) – Status logger

• metrics (autopush.metrics.IMetric) – Metric recorder

• endpoint (str) – GCM endpoint override

• options (dict) – Additional options

send(payload)
Send a payload to GCM

40 Chapter 4. Source Code

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

autopush Documentation, Release 1.58.4

Parameters payload (JSONMessage) – Dictionary of GCM formatted data

Returns Result

class autopush.router.gcmclient.JSONMessage(registration_ids, collapse_key, time_to_live,
dry_run, data)

GCM formatted payload

__init__(registration_ids, collapse_key, time_to_live, dry_run, data)
Convert data elements into a GCM payload.

Parameters

• registration_ids (str or list) – Single or list of registration ids to send to

• collapse_key (str) – GCM collapse key for the data.

• time_to_live (int) – Seconds to keep message alive

• dry_run (bool) – GCM Dry run flag to allow remote verification

• data (dict) – Data elements to send

class autopush.router.gcmclient.Result(response, message)
Abstraction object for GCM response

__init__(response, message)
Process GCM message and response into abstracted object

Parameters

• message (JSONMessage) – Message payload

• response (requests.Response) – GCM response

4.1.11 autopush.router.fcm

FCM legacy HTTP Router

class autopush.router.fcm.FCMRouter(conf, router_conf, metrics)
FCM Router Implementation

Note: FCM is a newer branch of GCM. While there’s not much change required for the server, there is significant
work required for the client. To that end, having a separate router allows the “older” GCM to persist and lets the
client determine when they want to use the newer FCM route.

__init__(conf, router_conf, metrics)
Create a new FCM router and connect to FCM

register(uaid, router_data, app_id, *args, **kwargs)
Validate that the FCM Instance Token is in the router_data

route_notification(notification, uaid_data)
Start the FCM notification routing, returns a deferred

_route(notification, router_data)
Blocking FCM call to route the notification

_error(err, status, **kwargs)
Error handler that raises the RouterException

_process_reply(reply, notification, router_data, ttl)
Process FCM send reply

4.1. Code Documentation 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

autopush Documentation, Release 1.58.4

4.1.12 autopush.router.interface

Router interface

class autopush.router.interface.RouterResponse(status_code=200, response_body=”,
router_data=None, headers=None,
errno=None, logged_status=None)

Router response if routing has succeeded.

If the router data needs to change as a result of this message, either the router got invalidated, or needs updating,
then the router_data should be set.

__init__(status_code=200, response_body=”, router_data=None, headers=None, errno=None,
logged_status=None)

Create a new RouterResponse

class autopush.router.interface.IRouter(conf, router_conf, **kwargs)

__init__(conf, router_conf, **kwargs)
Initialize the Router to handle notifications and registrations with the given conf and router conf.

register(uaid, router_data, app_id, *args, **kwargs)
Register the uaid with router_data however is preferred prior to storing router_data for this user.

Parameters

• uaid – User Agent Identifier

• router_data – Route specific configuration info

• app_id – Application identifier from URI

Raises RouterException if data supplied is invalid.

amend_endpoint_response(response, router_data)
Modify an outbound Endpoint registration response to include router info.

Some routers require additional info to be returned to clients.

Parameters

• response – The response data to be sent to the client

• router_data – Route specific configuration info

route_notification(notification, uaid_data)
Route a notification

Parameters

• notification – A Notificaiton instance.

• uaid_data – A dict of the full user item from the db record.

Returns A response object upon successful routing.

Return type RouterResponse

Raises RouterException if routing fails.

This function runs in the main reactor, if a yield is needed then a deferred must be returned for the callback
chain.

42 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

4.1.13 autopush.web.base

class autopush.web.base.ThreadedValidate(schema)
A cyclone request validation decorator

Exposed as a classmethod for running a marshmallow-based validation schema in a separate thread for a cyclone
request handler.

_validate_request(request_handler, *args, **kwargs)
Validates a schema_class against a cyclone request

_track_validation_timing(result, request_handler, start_time)
Track the validation timing

classmethod validate(schema)
Validate a request schema in a separate thread before calling the request handler

An alias threaded_validate should be used from this module.

Using cyclone.web.asynchronous is not needed as this function will attach equivilant functionality to the
method handler. Calling self.finish() is needed on decorated handlers.

Validated requests are deserialized into the **kwargs of the wrapped request handler method.

class MySchema(Schema):
uaid = fields.UUID(allow_none=True)

class MyHandler(cyclone.web.RequestHandler):
@threaded_validate(MySchema())
def post(self, uaid=None):

...

class autopush.web.base.BaseWebHandler(application, request, **kwargs)
Common overrides for Push web API’s

initialize()
Setup basic aliases and attributes

prepare()
Common request preparation

options(*args, **kwargs)
HTTP OPTIONS Handler

head(*args, **kwargs)
HTTP HEAD Handler

_write_response(status_code, errno, message=None, error=None, headers=None,
url=’http://autopush.readthedocs.io/en/latest/http.html#error-codes’,
router_type=None, vapid=None)

Writes out a full JSON error and sets the appropriate status

_validation_err(fail)
errBack for validation errors

_response_err(fail)
errBack for all exceptions that should be logged

This traps all exceptions to prevent any further callbacks from running.

_boto_err(fail)
errBack for boto exceptions (ClientError)

4.1. Code Documentation 43

autopush Documentation, Release 1.58.4

_router_fail_err(fail, router_type=None, vapid=False, uaid=None)
errBack for router failures

_write_validation_err(errors)
Writes a set of validation errors out with details about what went wrong

_db_error_handling(d)
Tack on the common error handling for a dynamodb request and uncaught exceptions

_track_timing(status_code=None)
Logs out the request timing tracking stats

Note: The status code should be set before calling this function or passed in.

class autopush.web.base.BaseWebHandler(application, request, **kwargs)
Common overrides for Push web API’s

initialize()
Setup basic aliases and attributes

prepare()
Common request preparation

options(*args, **kwargs)
HTTP OPTIONS Handler

head(*args, **kwargs)
HTTP HEAD Handler

_write_response(status_code, errno, message=None, error=None, headers=None,
url=’http://autopush.readthedocs.io/en/latest/http.html#error-codes’,
router_type=None, vapid=None)

Writes out a full JSON error and sets the appropriate status

_validation_err(fail)
errBack for validation errors

_response_err(fail)
errBack for all exceptions that should be logged

This traps all exceptions to prevent any further callbacks from running.

_boto_err(fail)
errBack for boto exceptions (ClientError)

_router_fail_err(fail, router_type=None, vapid=False, uaid=None)
errBack for router failures

_write_validation_err(errors)
Writes a set of validation errors out with details about what went wrong

_db_error_handling(d)
Tack on the common error handling for a dynamodb request and uncaught exceptions

_track_timing(status_code=None)
Logs out the request timing tracking stats

Note: The status code should be set before calling this function or passed in.

4.1.14 autopush.web.webpush

class autopush.web.webpush.WebPushHandler(application, request, **kwargs)

44 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

initialize()
Must run on initialization to set ahead of validation

_router_completed(response, uaid_data, warning=”, router_type=None, vapid=None)
Called after router has completed successfully

4.1.15 autopush.web.log_check

class autopush.web.log_check.LogCheckHandler(application, request, **kwargs)

authenticate_peer_cert()
LogCheck skips authentication checks

get(*args, **kwargs)
HTTP GET

Generate a dummy error message for logging

4.1.16 autopush.web.message

class autopush.web.message.MessageHandler(application, request, **kwargs)

delete(*args, **kwargs)
Drops a pending message.

The message will only be removed from DynamoDB. Messages that were successfully routed to a client
as direct updates, but not delivered yet, will not be dropped.

4.1.17 autopush.web.registration

class autopush.web.registration.NewRegistrationHandler(application, request,
**kwargs)

Handle new bridge uaid registrations

post(*args, **kwargs)
HTTP POST

Router type/data registration.

_register_user_and_channel(uaid, chid, router_type, router_data)
Register a new user/channel, return its endpoint

class autopush.web.registration.UaidRegistrationHandler(application, request,
**kwargs)

Handles UAID bridge methods

get(*args, **kwargs)
HTTP GET

Return a list of known channelIDs for a given UAID

put(*args, **kwargs)
HTTP PUT

Update router type/data for a UAID.

4.1. Code Documentation 45

autopush Documentation, Release 1.58.4

post(*args, **kwargs)
HTTP PUT

Update router type/data for a UAID.

delete(*args, **kwargs)
HTTP DELETE

Delete all pending records for the given UAID

_uaid_not_found_err(fail)
errBack for uaid lookup not finding the user

class autopush.web.registration.SubRegistrationHandler(application, request,
**kwargs)

Handle a new bridge channel id registration for a bridge user

class autopush.web.registration.ChannelRegistrationHandler(application, request,
**kwargs)

Handle deleting a channel for a bridge user

_chid_not_found_err(fail)
errBack for unknown chid

4.1.18 autopush.web.healthhandler

Health Check HTTP Handler

class autopush.web.health.HealthHandler(application, request, **kwargs)
HTTP Health Handler

authenticate_peer_cert()
Skip authentication checks

get(*args, **kwargs)
HTTP Get

Returns basic information about the version and how many clients are connected in a JSON object.

_check_table(table, name_over=None)
Checks the tables known about in DynamoDB

_check_success(exists, name)
Verifies a Table exists

_check_error(failure, name)
Returns an error, and why

_finish_response(results)
Returns whether the check succeeded or not

4.1.19 autopush.web.statushandler

class autopush.web.health.StatusHandler(application, request, **kwargs)
HTTP Status Handler

authenticate_peer_cert()
skip authentication checks

46 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

get()
HTTP Get

Returns that this node is alive, and the version.

4.1.20 autopush.ssl

Custom SSL configuration

class autopush.ssl.AutopushSSLContextFactory(*args, **kwargs)
A SSL context factory

cacheContext()
Setup the main context factory with custom SSL settings

4.1.21 autopush.utils

autopush.utils.canonical_url(scheme, hostname, port=None)
Return a canonical URL given a scheme/hostname and optional port

autopush.utils.resolve_ip(hostname)
Resolve a hostname to its IP if possible

autopush.utils.validate_uaid(uaid)
Validates a UAID a tuple indicating if its valid and the original uaid, or a new uaid if its invalid

autopush.utils.generate_hash(key, payload)
Generate a HMAC for the uaid using the secret

Returns HMAC hash and the nonce used as a tuple (nonce, hash).

4.1.22 autopush.websocket

Websocket Protocol handler and HTTP Endpoints for Connection Node

Private HTTP Endpoints

These HTTP endpoints are only for communication from endpoint nodes and must not be publicly exposed.

PUT /push/(uuid: uaid)
Send a notification to a connected client with the given uaid.

Status Codes

• 200 OK – Client is connected and delivery will be attempted.

• 404 Not Found – Client is not connected to this node.

• 503 Service Unavailable – Client is connected, but currently busy.

PUT /notif/(uuid: uaid)
Trigger a stored notification check for a connected client.

Status Codes

• 200 OK – Client is connected, and has started checking.

• 202 Accepted – Client is connected but busy, will check notifications when not busy.

4.1. Code Documentation 47

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3

autopush Documentation, Release 1.58.4

• 404 Not Found – Client is not connected to this node.

DELETE /notif/(uuid: uaid)/
int: connected_at Immediately drop a client of this uaid if its connection time matches the connected_at
provided.

Websocket Protocol

class autopush.websocket.PushServerProtocol
Main Websocket Connection Protocol

parent_class
alias of autobahn.twisted.websocket.WebSocketServerProtocol

classmethod randrange(start, stop=None, step=1, _int=<type ’int’>,
_maxwidth=9007199254740992L)

Choose a random item from range(start, stop[, step]).

This fixes the problem with randint() which includes the endpoint; in Python this is usually not what you
want.

deferToThread(func, *args, **kwargs)
deferToThread helper that tracks defers outstanding

deferToLater(when, func, *args, **kwargs)
deferToLater helper that tracks defers outstanding

force_retry(func, *args, **kwargs)
Forcefully retry a function in a thread until it doesn’t error

Note that this does not use self.deferToThread, so this will continue to retry even if the client drops.

base_tags
Property that uses None if there’s no tags due to a DataDog library bug

log_failure(failure, **kwargs)
Log a twisted failure out through twisted’s log.failure

paused
Indicates if we are paused for output production or not

_sendAutoPing(*args, **kwargs)
Override for sanity checking during auto-ping interval

sendClose(*args, **kwargs)
Override to add tracker that ensures the connection is truly torn down

nukeConnection(*args, **kwargs)
Aggressive connection shutdown using abortConnection if onClose still hadn’t run by this point

onConnect(*args, **kwargs)
autobahn onConnect handler for when a connection has started

processHandshake(*args, **kwargs)
Disable host port checking on nonstandard ports since some clients are buggy and don’t provide it

onMessage(*args, **kwargs)
autobahn onMessage processor for incoming messages

timeoutConnection()
Idle timer fired.

48 Chapter 4. Source Code

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

autopush Documentation, Release 1.58.4

onAutoPingTimeout()
Override to track that this shut-down is from a ping timeout

onClose(*args, **kwargs)
autobahn onClose handler for shutting down the connection and any outstanding deferreds related to this
connection

cleanUp(wasClean, code, reason)
Thorough clean-up method to cancel all remaining deferreds, and send connection metrics in

_save_webpush_notif(notif)
Save a direct_update webpush style notification

_lookup_node(results)
Looks up the node to send a notify for it to check storage if connected

_trap_uaid_not_found(fail)
Traps UAID not found error

_notify_node(result)
Checks the result of lookup node to send the notify if the client is connected elsewhere now

returnError(messageType, reason, statusCode, close=True, url=’http://autopush.readthedocs.io/en/latest/api/websocket.html#private-
http-endpoint’)

Return an error to a client, and optionally shut down the connection safely

error_overload(failure, message_type, disconnect=True)
Handle database overloads and errors

If disconnect is False, the an overload error is returned and the client is not disconnected.

Otherwise, pause producing to cease incoming notifications while we wait a random interval up to 8
seconds before closing down the connection. Most clients wait up to 10 seconds for a command, but this
is not a guarantee, so rather than never reply, we still shut the connection down.

Parameters disconnect – Whether the client should be disconnected or not.

error_finish_overload(message_type)
Close the connection down and resume consuming input after the random interval from a db overload

sendJSON(body)
Send a Python dict as a JSON string in a websocket message

process_hello(data)
Process a hello message

_register_user(existing_user=True)
Register a returning or new user

_verify_user_record()
Verify a user record is valid

Returns a record that is ready for registering in the database if the user record was found.

Return type Item or None

error_hello(failure)
errBack for hello failures

_check_other_nodes(result, url=’http://autopush.readthedocs.io/en/latest/api/websocket.html#private-
http-endpoint’)

callback to check other nodes for clients and send them a delete as needed

4.1. Code Documentation 49

autopush Documentation, Release 1.58.4

finish_hello(previous)
callback for successful hello message, that sends hello reply

process_notifications()
Run a notification check against storage

webpush_fetch()
Helper to return an appropriate function to fetch messages

error_notifications(fail)
errBack for notification check failing

error_notification_overload(fail)
errBack for provisioned errors during notification check

error_message_overload(fail)
errBack for handling excessive messages per UAID

finish_notifications(notifs)
callback for processing notifications from storage

finish_webpush_notifications(result)
WebPush notification processor

_rotate_message_table()
Function to fire off a message table copy of channels + update the router current_month entry

_monthly_transition()
Transition the client to use a new message month

Utilized to migrate a users channels to a new message month and update the router record reflecting the
proper month.

This is a blocking function that does not run on the event loop.

_finish_monthly_transition(result)
Mark the client as successfully transitioned and resume

error_monthly_rotation_overload(fail)
Capture overload on monthly table rotation attempt

If a provision exceeded error hits while attempting monthly table rotation, schedule it all over and re-scan
the messages. Normal websocket client flow is returned in the meantime.

_send_ping()
Helper for ping sending that tracks when the ping was sent

process_ping()
Ping Handling

Clients in the wild have a bug that lowers their ping interval to 0. It will never increase for them, as there is
no way to remedy this without causing the client to use drastically more battery/data-usage we send them
a code 4774 close to signify that they should stop until network change.

No other client should ping more than once per minute, or we tell them to go away.

process_register(data)
Process a register message

error_register(fail)
errBack handler for registering to fail

finish_register(endpoint, chid)
callback for successful endpoint creation, sends register reply

50 Chapter 4. Source Code

autopush Documentation, Release 1.58.4

process_unregister(data)
Process an unregister message

ack_update(update)
Helper function for tracking ack’d updates

Returns either None, if no delete_notification call is needed, or a deferred for the delete_notification call if
it was needed.

_handle_webpush_ack(chid, version, code)
Handle clearing out a webpush ack

_handle_webpush_update_remove(result, chid, notif)
Handle clearing out the updates_sent

It’s possible the client may leave before this runs, so this is wrapped in a try/except in case the tear-down
of self has started.

process_ack(data)
Process an ack message, delete notifications from storage if needed

process_nack(data)
Process a nack message and log its contents

check_missed_notifications(results, resume=False)
Check to see if notifications were missed

bad_message(typ, message=None, url=’http://autopush.readthedocs.io/en/latest/api/websocket.html#private-
http-endpoint’)

Error helper for sending a 401 status back

send_notification(update)
Utility function for external use

This function is called by the HTTP handler to deliver an incoming update notification from an endpoint.

HTTP Handlers

class autopush.websocket.RouterHandler(application, request, **kwargs)
Router Handler

Handles routing a notification to a connected client from an endpoint.

put(uaid)
HTTP Put

Attempt delivery of a notification to a connected client.

class autopush.websocket.NotificationHandler(application, request, **kwargs)

put(uaid, *args)
HTTP Put

Notify a connected client that it should check storage for new notifications.

delete(uaid, connected_at)
HTTP Delete

Drop a connected client as the client has connected to a new node.

4.1. Code Documentation 51

autopush Documentation, Release 1.58.4

Utility Functions

autopush.websocket.ms_time()
Return current time.time call as ms and a Python int

autopush.websocket.log_exception(func)
Exception Logger Decorator for protocol methods

4.1.23 autopush.jwt

class autopush.jwt.VerifyJWT
Minimally verify a Vapid JWT object.

Why hand roll? Most python JWT libraries either use a python elliptic curve library directly, or call one that
does, or is abandoned, or a dozen other reasons.

After spending half a day looking for reasonable replacements, I decided to just write the functions we need
directly.

THIS IS NOT A FULL JWT REPLACEMENT.

static extract_signature(auth)
Fix the JWT auth token.

The JWA spec defines the signature to be a pair of 32octet encoded longs. The ecdsa library signs using a
raw, 32octet pair of values (s, r). Cryptography, which uses OpenSSL, uses a DER sequence of (s, r). This
function converts the raw ecdsa to DER.

Parameters auth (str) – A JWT authorization token.

:return tuple containing the signature material and signature

static extract_assertion(token)
Extract the assertion dictionary from the passed token. This does NOT do validation.

Parameters token (str) – Partial or full VAPID auth token

:return dict of the VAPID claims

static validate_and_extract_assertion(token, key)
Decode a web token into a assertion dictionary.

This attempts to rectify both ecdsa and openssl generated signatures. We use the built-in cryptography
library since it wraps libssl and is faster than the python only approach.

Parameters

• token (str) – VAPID auth token

• key (str or bitarray) – bitarray containing public key

:return dict of the VAPID claims

:raise InvalidSignature

We are using rust for a number of optimizations and speed improvements. These efforts are ongoing and may be
subject to change. Unfortunately, this also means that formal documentation is not yet available. You are, of course,
welcome to review the code located in ./autopush_rs.

52 Chapter 4. Source Code

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://rust-lang.org

CHAPTER 5

Changelog

53

autopush Documentation, Release 1.58.4

54 Chapter 5. Changelog

CHAPTER 6

Bugs/Support

Bugs should be reported on the autopush github issue tracker.

The developers of autopush can frequently be found on the Mozilla IRC network (irc.mozilla.org) in the #push
channel.

55

https://github.com/mozilla-services/autopush/issues
irc://irc.mozilla.org/push

autopush Documentation, Release 1.58.4

56 Chapter 6. Bugs/Support

CHAPTER 7

autopush Endpoints

autopush is automatically deployed from master to a dev environment for testing, a stage environment for tagged
releases, and the production environment used by Firefox/FirefoxOS.

7.1 dev

• Websocket: wss://autopush.dev.mozaws.net/

• Endpoint: https://updates-autopush.dev.mozaws.net/

7.2 stage

• Websocket: wss://autopush.stage.mozaws.net/

• Endpoint: https://updates-autopush.stage.mozaws.net/

7.3 production

• Websocket: wss://push.services.mozilla.com/

• Endpoint: https://updates.push.services.mozilla.com/

57

https://updates-autopush.dev.mozaws.net/
https://updates-autopush.stage.mozaws.net/
https://updates.push.services.mozilla.com/

autopush Documentation, Release 1.58.4

58 Chapter 7. autopush Endpoints

CHAPTER 8

Reference

• genindex

• modindex

• Glossary

8.1 Glossary

AppServer A third-party Application Server that delivers notifications to client applications via Push.

Bridging Using a third party or proprietary network in order to deliver Push notifications to an App. This may be
preferred for mobile devices where such a network may improve battery life or other reasons.

Channel A unique route between an AppServer and the Application. May also be referred to as Subscription

CHID The Channel Subscription ID. Push assigns each subscription (or channel) a unique identifier.

Message-ID A unique message ID. Each message for a given subscription is given a unique identifier that is returned
to the AppServer in the Location header.

Notification A message sent to an endpoint node intended for delivery to a HTTP endpoint. Autopush stores these in
the message tables.

Router Type Every UAID that connects has a router type. This indicates the type of routing to use when dispatching
notifications. For most clients, this value will be webpush. Clients using Bridging it will use either gcm, fcm,
apns, or adm.

Subscription A unique route between an AppServer and the Application. May also be referred to as a Channel

UAID The Push User Agent Registration ID. Push assigns each remote recipient (Firefox client) a unique identifier.
These may occasionally be reset by the Push Service or the client.

WebPush An IETF standard for communication between Push Services, the clients, and application servers.

See: https://datatracker.ietf.org/doc/draft-ietf-webpush-protocol/

59

https://datatracker.ietf.org/doc/draft-ietf-webpush-protocol/

autopush Documentation, Release 1.58.4

8.2 Migrating to Rust

Progress never comes from resting. One of the significant considerations of running a service that needs to commu-
nicate with hundreds of millions of clients is cost. We are forced to continually evaluate and optimize. When a lower
cost option is presented, we seriously consider it.

There is some risk, of course, so rapid change is avoided and testing is strongly encouraged. As of early 2018, the
decision was made to move the costlier elements of the server to Rust. The rust based application is at autopush-rs.

8.2.1 Why Rust?

Rust is a strongly typed, memory efficient language. It has matured rapidly and offers structure that vastly reduces the
memory requirements for running connections. As a bonus, it’s also forced us to handle potential bugs, making the
service more reliable.

The current python environment we use (pypy) continues to improve as well, but does not offer the sort of improve-
ments that rust does when it comes to handling socket connections.

To that end we’re continuing to use pypy for the endpoint connection management for the time being.

8.2.2 When is the switch going to happen?

As of the end of June 2018, our rust handler is in testing. We expect to deploy it soon, but since this deployment should
not impact external users, we’re not rushing to deploy just to hit an arbitrary milestone. It will be deployed when all
parties have determined it’s ready.

8.2.3 What will happen to autopush?

Currently, the plan is to maintain it so long as it’s in production use. Since we plan on continuing to have autopush
handle endpoints for some period, even after autopush-rs has been deployed to production and is handling connections.
However, we do reserve the right to archive this repo at some future date.

60 Chapter 8. Reference

https://github.com/mozilla-services/autopush-rs

CHAPTER 9

License

autopush is offered under the Mozilla Public License 2.0.

61

autopush Documentation, Release 1.58.4

62 Chapter 9. License

HTTP Routing Table

/m
DELETE /m/{message_id}, 7

/notif
PUT /notif/(uuid:uaid), 47
DELETE /notif/(uuid:uaid)/(int:connected_at),

48

/push
PUT /push/(uuid:uaid), 47

/v1
GET /v1/{type}/{app_id}/registration/{UAID}/,

10
POST /v1/{type}/{app_id}/registration,

8
POST /v1/{type}/{app_id}/registration/{uaid}/subscription,

9
PUT /v1/{type}/{app_id}/registration/{uaid},

8
DELETE /v1/{type}/{app_id}/registration/{UAID}/subscription/{CHID},

10
DELETE /v1/{type}/{app_id}/registration/{uaid},

10

/{push_endpoint}
POST {push_endpoint}, 6

63

autopush Documentation, Release 1.58.4

64 HTTP Routing Table

Python Module Index

a
autopush.config, 31
autopush.db, 33
autopush.exceptions, 35
autopush.jwt, 52
autopush.logging, 35
autopush.main, 36
autopush.metrics, 37
autopush.protocol, 38
autopush.router.apns2, 39
autopush.router.apnsrouter, 38
autopush.router.fcm, 41
autopush.router.gcm, 40
autopush.router.gcmclient, 40
autopush.router.interface, 42
autopush.ssl, 47
autopush.utils, 47
autopush.web.base, 43
autopush.web.health, 46
autopush.web.log_check, 45
autopush.web.message, 45
autopush.web.registration, 45
autopush.web.webpush, 44
autopush.websocket, 47

65

autopush Documentation, Release 1.58.4

66 Python Module Index

Index

Symbols
__call__() (autopush.logging.PushLogger method),

35
__init__() (autopush.config.AutopushConfig

method), 33
__init__() (autopush.db.Router method), 34
__init__() (autopush.exceptions.RouterException

method), 35
__init__() (autopush.logging.FirehoseProcessor

method), 35
__init__() (autopush.logging.PushLogger method),

35
__init__() (autopush.metrics.IMetrics method), 37
__init__() (autopush.router.apns2.APNSClient

method), 39
__init__() (autopush.router.apnsrouter.APNSRouter

method), 38
__init__() (autopush.router.fcm.FCMRouter

method), 41
__init__() (autopush.router.gcm.GCMRouter

method), 40
__init__() (autopush.router.gcmclient.GCM

method), 40
__init__() (autopush.router.gcmclient.JSONMessage

method), 41
__init__() (autopush.router.gcmclient.Result

method), 41
__init__() (autopush.router.interface.IRouter

method), 42
__init__() (autopush.router.interface.RouterResponse

method), 42
_boto_err() (autopush.web.base.BaseWebHandler

method), 43, 44
_check_error() (auto-

push.web.health.HealthHandler method),
46

_check_other_nodes() (auto-
push.websocket.PushServerProtocol method),
49

_check_success() (auto-
push.web.health.HealthHandler method),
46

_check_table() (auto-
push.web.health.HealthHandler method),
46

_chid_not_found_err() (auto-
push.web.registration.ChannelRegistrationHandler
method), 46

_connect() (autopush.router.apnsrouter.APNSRouter
method), 38

_db_error_handling() (auto-
push.web.base.BaseWebHandler method),
44

_error() (autopush.router.fcm.FCMRouter method),
41

_error() (autopush.router.gcm.GCMRouter method),
40

_finish_monthly_transition() (auto-
push.websocket.PushServerProtocol method),
50

_finish_response() (auto-
push.web.health.HealthHandler method),
46

_from_argparse() (auto-
push.main.AutopushMultiService class
method), 37

_handle_webpush_ack() (auto-
push.websocket.PushServerProtocol method),
51

_handle_webpush_update_remove() (auto-
push.websocket.PushServerProtocol method),
51

_lookup_node() (auto-
push.websocket.PushServerProtocol method),
49

_monthly_transition() (auto-
push.websocket.PushServerProtocol method),
50

_notify_node() (auto-

67

autopush Documentation, Release 1.58.4

push.websocket.PushServerProtocol method),
49

_process_reply() (auto-
push.router.fcm.FCMRouter method), 41

_process_reply() (auto-
push.router.gcm.GCMRouter method), 40

_register_user() (auto-
push.websocket.PushServerProtocol method),
49

_register_user_and_channel() (auto-
push.web.registration.NewRegistrationHandler
method), 45

_response_err() (auto-
push.web.base.BaseWebHandler method),
43, 44

_rotate_message_table() (auto-
push.websocket.PushServerProtocol method),
50

_route() (autopush.router.apnsrouter.APNSRouter
method), 39

_route() (autopush.router.fcm.FCMRouter method),
41

_route() (autopush.router.gcm.GCMRouter method),
40

_router_completed() (auto-
push.web.webpush.WebPushHandler method),
45

_router_fail_err() (auto-
push.web.base.BaseWebHandler method),
43, 44

_save_webpush_notif() (auto-
push.websocket.PushServerProtocol method),
49

_sendAutoPing() (auto-
push.websocket.PushServerProtocol method),
48

_send_ping() (auto-
push.websocket.PushServerProtocol method),
50

_track_timing() (auto-
push.web.base.BaseWebHandler method),
44

_track_validation_timing() (auto-
push.web.base.ThreadedValidate method),
43

_trap_uaid_not_found() (auto-
push.websocket.PushServerProtocol method),
49

_uaid_not_found_err() (auto-
push.web.registration.UaidRegistrationHandler
method), 46

_validate_request() (auto-
push.web.base.ThreadedValidate method),
43

_validation_err() (auto-
push.web.base.BaseWebHandler method),
43, 44

_verify_user_record() (auto-
push.websocket.PushServerProtocol method),
49

_write_response() (auto-
push.web.base.BaseWebHandler method),
43, 44

_write_validation_err() (auto-
push.web.base.BaseWebHandler method),
44

A
ack_update() (auto-

push.websocket.PushServerProtocol method),
51

add_endpoint() (auto-
push.main.EndpointApplication method),
36

add_internal_router() (auto-
push.main.ConnectionApplication method),
36

add_maybe_ssl() (auto-
push.main.AutopushMultiService method),
36

add_memusage() (auto-
push.main.AutopushMultiService method),
36

add_timer() (autopush.main.AutopushMultiService
method), 36

add_websocket() (auto-
push.main.ConnectionApplication method),
36

amend_endpoint_response() (auto-
push.router.apnsrouter.APNSRouter method),
38

amend_endpoint_response() (auto-
push.router.interface.IRouter method), 42

APNSClient (class in autopush.router.apns2), 39
APNSRouter (class in autopush.router.apnsrouter), 38
AppServer, 59
authenticate_peer_cert() (auto-

push.web.health.HealthHandler method),
46

authenticate_peer_cert() (auto-
push.web.health.StatusHandler method),
46

authenticate_peer_cert() (auto-
push.web.log_check.LogCheckHandler
method), 45

autopush.config (module), 31
autopush.db (module), 33
autopush.exceptions (module), 35

68 Index

autopush Documentation, Release 1.58.4

autopush.jwt (module), 52
autopush.logging (module), 35
autopush.main (module), 36
autopush.metrics (module), 37
autopush.protocol (module), 38
autopush.router.apns2 (module), 39
autopush.router.apnsrouter (module), 38
autopush.router.fcm (module), 41
autopush.router.gcm (module), 40
autopush.router.gcmclient (module), 40
autopush.router.interface (module), 42
autopush.ssl (module), 47
autopush.utils (module), 47
autopush.web.base (module), 43
autopush.web.health (module), 46
autopush.web.log_check (module), 45
autopush.web.message (module), 45
autopush.web.registration (module), 45
autopush.web.webpush (module), 44
autopush.websocket (module), 47
AutopushConfig (class in autopush.config), 31
AutopushException (class in autopush.exceptions),

35
AutopushMultiService (class in autopush.main),

36
AutopushSSLContextFactory (class in auto-

push.ssl), 47

B
bad_message() (auto-

push.websocket.PushServerProtocol method),
51

base_tags (autopush.websocket.PushServerProtocol
attribute), 48

BaseWebHandler (class in autopush.web.base), 43, 44
Bridging, 59

C
cacheContext() (auto-

push.ssl.AutopushSSLContextFactory method),
47

canonical_url() (in module autopush.utils), 47
cf() (autopush.config.SSLConfig method), 33
Channel, 59
ChannelRegistrationHandler (class in auto-

push.web.registration), 46
check_missed_notifications() (auto-

push.websocket.PushServerProtocol method),
51

CHID, 59
cleanUp() (autopush.websocket.PushServerProtocol

method), 49
clear_node() (autopush.db.Router method), 35

ConnectionApplication (class in autopush.main),
36

connectionLost() (autopush.protocol.IgnoreBody
method), 38

create_router_table() (in module autopush.db),
34

D
dataReceived() (autopush.protocol.IgnoreBody

method), 38
DDBTableConfig (class in autopush.config), 33
deferToLater() (auto-

push.websocket.PushServerProtocol method),
48

deferToThread() (auto-
push.websocket.PushServerProtocol method),
48

delete() (autopush.web.message.MessageHandler
method), 45

delete() (autopush.web.registration.UaidRegistrationHandler
method), 46

delete() (autopush.websocket.NotificationHandler
method), 51

drop_user() (autopush.db.Router method), 34

E
enable_tls_auth (autopush.config.AutopushConfig

attribute), 32
EndpointApplication (class in autopush.main), 36
error_finish_overload() (auto-

push.websocket.PushServerProtocol method),
49

error_hello() (auto-
push.websocket.PushServerProtocol method),
49

error_message_overload() (auto-
push.websocket.PushServerProtocol method),
50

error_monthly_rotation_overload() (auto-
push.websocket.PushServerProtocol method),
50

error_notification_overload() (auto-
push.websocket.PushServerProtocol method),
50

error_notifications() (auto-
push.websocket.PushServerProtocol method),
50

error_overload() (auto-
push.websocket.PushServerProtocol method),
49

error_register() (auto-
push.websocket.PushServerProtocol method),
50

Index 69

autopush Documentation, Release 1.58.4

extract_assertion() (autopush.jwt.VerifyJWT
static method), 52

extract_signature() (autopush.jwt.VerifyJWT
static method), 52

F
FCMRouter (class in autopush.router.fcm), 41
finish_hello() (auto-

push.websocket.PushServerProtocol method),
49

finish_notifications() (auto-
push.websocket.PushServerProtocol method),
50

finish_register() (auto-
push.websocket.PushServerProtocol method),
50

finish_webpush_notifications() (auto-
push.websocket.PushServerProtocol method),
50

FirehoseProcessor (class in autopush.logging), 35
force_retry() (auto-

push.websocket.PushServerProtocol method),
48

from_argparse() (autopush.config.AutopushConfig
class method), 32

G
gauge() (autopush.metrics.IMetrics method), 37
gauge() (autopush.metrics.SinkMetrics method), 37
GCM (class in autopush.router.gcmclient), 40
GCMRouter (class in autopush.router.gcm), 40
generate_hash() (in module autopush.utils), 47
get() (autopush.web.health.HealthHandler method),

46
get() (autopush.web.health.StatusHandler method), 46
get() (autopush.web.log_check.LogCheckHandler

method), 45
get() (autopush.web.registration.UaidRegistrationHandler

method), 45
get_router_table() (in module autopush.db), 34
get_uaid() (autopush.db.Router method), 34

H
head() (autopush.web.base.BaseWebHandler method),

43, 44
HealthHandler (class in autopush.web.health), 46

I
ignore() (autopush.protocol.IgnoreBody class

method), 38
IgnoreBody (class in autopush.protocol), 38
IMetrics (class in autopush.metrics), 37
increment() (autopush.metrics.IMetrics method), 37

increment() (autopush.metrics.SinkMetrics method),
37

initialize() (autopush.web.base.BaseWebHandler
method), 43, 44

initialize() (auto-
push.web.webpush.WebPushHandler method),
44

IRouter (class in autopush.router.interface), 42

J
JSONMessage (class in autopush.router.gcmclient), 41

L
log_exception() (in module autopush.websocket),

52
log_failure() (auto-

push.websocket.PushServerProtocol method),
48

LogCheckHandler (class in auto-
push.web.log_check), 45

M
main() (autopush.main.AutopushMultiService class

method), 37
make_endpoint() (autopush.config.AutopushConfig

method), 32
Message-ID, 59
MessageHandler (class in autopush.web.message), 45
ms_time() (in module autopush.websocket), 52

N
NewRegistrationHandler (class in auto-

push.web.registration), 45
Notification, 59
NotificationHandler (class in auto-

push.websocket), 51
nukeConnection() (auto-

push.websocket.PushServerProtocol method),
48

O
onAutoPingTimeout() (auto-

push.websocket.PushServerProtocol method),
48

onClose() (autopush.websocket.PushServerProtocol
method), 49

onConnect() (autopush.websocket.PushServerProtocol
method), 48

onMessage() (autopush.websocket.PushServerProtocol
method), 48

options() (autopush.web.base.BaseWebHandler
method), 43, 44

70 Index

autopush Documentation, Release 1.58.4

P
parent_class (auto-

push.websocket.PushServerProtocol attribute),
48

parse_args() (autopush.main.AutopushMultiService
static method), 36

parse_args() (auto-
push.main.ConnectionApplication static
method), 36

parse_args() (autopush.main.EndpointApplication
static method), 36

parse_endpoint() (auto-
push.config.AutopushConfig method), 32

paused (autopush.websocket.PushServerProtocol at-
tribute), 48

post() (autopush.web.registration.NewRegistrationHandler
method), 45

post() (autopush.web.registration.UaidRegistrationHandler
method), 45

preflight_check() (in module autopush.db), 34
prepare() (autopush.web.base.BaseWebHandler

method), 43, 44
process_ack() (auto-

push.websocket.PushServerProtocol method),
51

process_hello() (auto-
push.websocket.PushServerProtocol method),
49

process_nack() (auto-
push.websocket.PushServerProtocol method),
51

process_notifications() (auto-
push.websocket.PushServerProtocol method),
50

process_ping() (auto-
push.websocket.PushServerProtocol method),
50

process_register() (auto-
push.websocket.PushServerProtocol method),
50

process_unregister() (auto-
push.websocket.PushServerProtocol method),
50

processHandshake() (auto-
push.websocket.PushServerProtocol method),
48

PushLogger (class in autopush.logging), 35
PushServerProtocol (class in auto-

push.websocket), 48
put() (autopush.web.registration.UaidRegistrationHandler

method), 45
put() (autopush.websocket.NotificationHandler

method), 51
put() (autopush.websocket.RouterHandler method), 51

R
randrange() (autopush.websocket.PushServerProtocol

class method), 48
register() (autopush.router.apnsrouter.APNSRouter

method), 38
register() (autopush.router.fcm.FCMRouter

method), 41
register() (autopush.router.gcm.GCMRouter

method), 40
register() (autopush.router.interface.IRouter

method), 42
register_user() (autopush.db.Router method), 34
resolve_ip() (in module autopush.utils), 47
Result (class in autopush.router.gcmclient), 41
returnError() (auto-

push.websocket.PushServerProtocol method),
49

route_notification() (auto-
push.router.apnsrouter.APNSRouter method),
39

route_notification() (auto-
push.router.fcm.FCMRouter method), 41

route_notification() (auto-
push.router.gcm.GCMRouter method), 40

route_notification() (auto-
push.router.interface.IRouter method), 42

Router (class in autopush.db), 34
Router Type, 59
RouterException (class in autopush.exceptions), 35
RouterHandler (class in autopush.websocket), 51
RouterResponse (class in autopush.router.interface),

42
run() (autopush.main.AutopushMultiService method),

36

S
send() (autopush.router.apns2.APNSClient method),

39
send() (autopush.router.gcmclient.GCM method), 40
send_notification() (auto-

push.websocket.PushServerProtocol method),
51

sendClose() (autopush.websocket.PushServerProtocol
method), 48

sendJSON() (autopush.websocket.PushServerProtocol
method), 49

setup() (autopush.main.AutopushMultiService
method), 36

setup() (autopush.main.ConnectionApplication
method), 36

setup() (autopush.main.EndpointApplication method),
36

SinkMetrics (class in autopush.metrics), 37
SSLConfig (class in autopush.config), 33

Index 71

autopush Documentation, Release 1.58.4

start() (autopush.metrics.IMetrics method), 37
StatusHandler (class in autopush.web.health), 46
SubRegistrationHandler (class in auto-

push.web.registration), 46
Subscription, 59

T
ThreadedValidate (class in autopush.web.base), 43
timeoutConnection() (auto-

push.websocket.PushServerProtocol method),
48

timing() (autopush.metrics.IMetrics method), 37
timing() (autopush.metrics.SinkMetrics method), 37

U
UAID, 59
UaidRegistrationHandler (class in auto-

push.web.registration), 45
update_message_month() (autopush.db.Router

method), 35

V
validate() (autopush.web.base.ThreadedValidate

class method), 43
validate_and_extract_assertion() (auto-

push.jwt.VerifyJWT static method), 52
validate_uaid() (in module autopush.utils), 47
VerifyJWT (class in autopush.jwt), 52

W
WebPush, 59
webpush_fetch() (auto-

push.websocket.PushServerProtocol method),
50

WebPushHandler (class in autopush.web.webpush),
44

websocket_factory (auto-
push.main.ConnectionApplication attribute),
36

websocket_site_factory (auto-
push.main.ConnectionApplication attribute),
36

72 Index

	Autopush APIs
	HTTP Endpoints for Notifications
	Push Service HTTP API
	Push Service Bridge HTTP Interface

	Running Autopush
	Architecture
	Running Autopush

	Developing Autopush
	Installing
	Testing
	Release Process
	Coding Style Guide

	Source Code
	Code Documentation

	Changelog
	Bugs/Support
	autopush Endpoints
	dev
	stage
	production

	Reference
	Glossary
	Migrating to Rust

	License
	HTTP Routing Table
	Python Module Index
	Index

